期刊文献+

基于Fréchet距离函数的轨迹隐私保护方法

Trajectory Privacy Protection Method Based on Frechet Distance Function
下载PDF
导出
摘要 针对传统的基于欧几里得距离函数计算轨迹相似性过程,要求轨迹等长且时间点对应,没有考虑轨迹的形状,一定程度影响了轨迹隐私保护的效果和数据的利用率问题,提出了一种基于Fréchet距离函数的轨迹隐私保护方法.该方法将轨迹运动方向相近且平均速度相近的轨迹匿名在一起,利用Fréchet距离方法计算轨迹间的距离,最后利用轨迹图之间的权值实现轨迹匿名集合.与其他隐私保护算法比较,在隐私保护和信息损失率上都有一定的改进,表明该方法在处理隐私保护数据方面是有效的. For the traditional trajectory similarity calculation process based on Euclidean distance function,the trajectory is required to be equal in length and corresponding in time points,however,does not consider the shape of the trajectory,which affects the effect of trajectory privacy protection and the utilization of data to a certain extent.A research on trajectory privacy protection method based on Frechet distance function was conducted.In this method,trajectories with similar motion directions and similar average velocities were anonymous together,and the Frechet distance method was used to calculate the distance between trajectories.Finally,the weights between trajectory maps were used to realize the anonymous set of trajectories.Compared with other privacy protection algorithms,there are some improvements in privacy protection and information loss rate,which indicates that this method is effective in processing privacy protection data.
作者 张兴兰 杨文金 ZHANG Xinglan;YANG Wenjin(Faculty of Information Technology,Beijing University of Technology,Beijing 100124,China;Beijing Municipal Key Laboratory of Trusted Computing,Beijing 100124,China)
出处 《北京工业大学学报》 EI CAS CSCD 北大核心 2021年第2期127-134,共8页 Journal of Beijing University of Technology
基金 国家自然科学基金资助项目(61272044,61602019,61801008) 北京市自然科学基金资助项目(3182028)。
关键词 轨迹数据 隐私保护 Fréchet距离函数 数据可用性 K-匿名 轨迹图 trajectory data privacy protection Frechet distance function data availability k-anonymity trajectory graph
  • 相关文献

参考文献6

二级参考文献28

  • 1Samarati P. Protecting respondent's identities in microdata release [J]. IEEE Trans on Knowledge and Data Engineering, 2001, 13(6): 1010-1027.
  • 2Sweeney L. K-anonymity: A model for protecting privacy [J]. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 2002, 10(5) : 557-570.
  • 3Michael B, Tom Z J. A face is exposed for aol searcher no. 4417749 IN]. New York Times, 2006-08-09(8).
  • 4Abul O, Bonchi F, Nanni M. Never walk alone: Trajectory anonymity via clustering, ISTI-007/2007 [R]. Pisa: Institute of Information Science and Technologies (ISTI), Italian National Research Council (CNR), 2007.
  • 5Abul O, Bonchi F, Nanni M. Never walk alone: Uncertainty for anonymity in moving objects databases [C]//Proc of IEEE ICDE'08. Piscataway, NJ: IEEE, 2008:3.76-385.
  • 6Saygin Y, Nergiz E, Atzori M. Towards trajectory anonymization: A generalization-based approach [C]//Proc of the SIGSPATIAL ACM GIS 2008 Int Workshop on Security and Privacy in GIS and LBS. New York: ACM, 2008: 52-61.
  • 7Yarovoy R, Bonchi F, Lakshmanan V S, et al. Anonymizing moving objects: How to hide a MOB in a crowd? [C]//Proc of the 12th Int Conf on Extending Database Technology:Advances in Database Technology. New York: ACM, 2009:23-26.
  • 8Lin Dan, Gurung S, Jiang Wei, et al. Privacy-preserving location pub].ishing under road-network constraints [G] // LNCS 5982: Proc of the 15th Int Conf on Database Systems for Advanced Applications. Berlin: Springer, 2010:17-31.
  • 9Abul O, Bonchi F, Nanni M. Anonymization of moving objects databases by clustering and perturbation [J]. Information Systems, 2010, 35(8): 884-910.
  • 10Chen L, Ozsu M T, Oria V. Robust and fast similarity search for moving object trajectories [C]//Proc of ACM SIGMOD'05. NewYork: ACM, 2005: 491-502.

共引文献124

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部