期刊文献+

大数据在企业生产经营中的应用 被引量:48

The Application of Big Data in Enterprise Production and Operation
下载PDF
导出
摘要 随着信息通信技术的快速发展,以及数据收集、存储、加工处理和开发应用能力的不断提升,大数据的规模迅速扩大,种类不断增多,在企业生产经营中开始发挥越来越重要的作用。由于不同类型企业的生产经营方式不同,大数据在不同类型企业生产经营中的应用场景有所不同,其所发挥的作用也有所差异。现阶段,企业在应用大数据时面临着数据标准不一、人才短缺、安全难以得到有效保障、存储成本高昂等挑战。为此,应加强大数据标准体系建设,加快推进大数据基础设施建设,有序推进政府数据开放共享,加快培育复合型大数据人才,完善网络及大数据安全体系建设,促进大数据在企业生产经营中得到更好的应用,发挥更大的作用。 With the rapid development of information and communication technology,the capabilities of data collection,storage,processing and application keep improving,the scale and types of big data are expanding rapidly and playing an increasingly important role in the production and operation of enterprises.Due to the different production and operation modes of different types of enterprises,the application scenarios of big data in the production and operation of different types of enterprises are different,and their roles are also different.We found that there are still some problems and challenges faced by enterprises in applying big data,such as no unified data standard,short of big data talents,security failure,high storage cost,etc.Therefore,it is necessary to strengthen the construction of big data standard system,accelerate the construction of big data infrastructure,gradually promote the open and sharing of government data,accelerate the cultivation of multi-skilled big data talents,improve the construction of network and big data security system,to promote the better application and utilization of big data in enterprise production and operation.
作者 许宪春 王洋 XU Xian-chun;WANG Yang
出处 《改革》 CSSCI 北大核心 2021年第1期18-35,共18页 Reform
基金 国家自然科学基金重大研究计划培育项目“大数据背景下的数据资产统计与核算问题研究”(92046013) 清华大学国家高端智库课题“数据资产价值测度问题研究”(2020ZZBF0134) 清华大学经济管理学院“影响力”提升计划项目“关于数据资产的测度研究”(2020051002)。清华大学经济管理学院研究基金的资助
关键词 大数据 企业生产经营 应用场景 big data enterprise production and operation application scenario
  • 相关文献

二级参考文献24

  • 1Cox M, Ellsworth D. Application- controlled demand paging for out-ofcore visualizetion. Proceedings of the 8th Conference on Visualization, Phoenix, AZ, USA, 1997:235-244.
  • 2U. S. Government. Big data r and development initiative, http whitehouse.gov/ sites/defaul microsites/ostp/big_data_press esearch ://www. t/files/ releasefinal_2.pdf, 2012.
  • 3Wikipedia. Big data. http://en.wikipedia. org/wiki/Big_data, 2015.
  • 4Mark B. Gartner says solving 'big data' challenge involves more than just managing volumes of data. http://www. gar tner.com/newsroom/id/1731916, 2011.
  • 5Villanova University. What is big data. ht tp://www.villanovau.com/resources/bi/ what-is-big-data/, 2015.
  • 6数据科学与大数据的科学原理及发展前景.第462次香山科学会议,北京,中国,2013.
  • 7The scientific principle and prospect of data science and big data. Proceedings of the 462nd Xiangshan Science Conference, Beijing, China, 2013.
  • 8World Economic Forum. Big data, big impact: new possibilities for international development, http ://www3.weforum.org/ docs/WEF TC MFS_BigDataBiglmpact_ Briefing_ 2012.pdf, 2012.
  • 9Zhu Y Y, Zhong N, Xiong Y. Data explosion, data nature and dataology. Proceedings of International Conference on Brain Informatics, Beijing, China, 2009:147-158.
  • 10Zhu Y Y, Xiong Y. Dataology and Data Science. Shanghai: Fudan University Press, 2009.

共引文献54

同被引文献667

引证文献48

二级引证文献418

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部