期刊文献+

关节点连接历史图与卷积神经网络结合的双人交互动作识别

Human interaction recognition based on joint connection history maps and convolutional neural network
下载PDF
导出
摘要 人体关节点数据可以精确表征人体运动的三维信息,卷积神经网络能够提取二维图像中的深层次特征,因此将关节点数据与卷积神经网络结合用于双人交互动作识别具有很好的研究意义。目前将两者结合的方法中,多数不能充分利用关节点的时空关系,导致识别率不高。提出一种新的关节点数据的时空特征表示方法,即关节点连接历史图。首先将关节点数据中的关节点按照人体骨架顺序连接得到关节点连接图,然后将每帧关节点连接图中的关节点和关节点连线按照时间顺序谱编码得到关节点连接历史图,最后将其馈送到卷积神经网络得到最终的识别结果。实验结果表明,关节点连接历史图与CNN结合可以准确识别双人交互动作,在国际公开的SBU Kinect interaction数据库测试中达到94.12%的识别率,充分证明了所提出算法的有效性。 The joint data can accurately represent three-dimensional information of human motion,and CNN can extract the deep features from images.Hence it is significant to combine them for human interaction recognition.Most of existing methods could not make full use of the spatial position relationship and time sequence in the joint data,which results in low recognition results.This paper proposes a new spatio-temporal feature representation method of joint data,that is,joint connection history map.First,connect the joint points according to the order of human skeleton to obtain the joint point connection map.Then,code the joint points and connections of each frame according to the time sequence spectrum to obtain the joint connection history map.Finally,feed it to the convolutional neural network to get the final recognition result.Experimental results show that the combination of the joint connection history map and CNN can identify human interaction exactly.The recognition rate reaches 94.12%in the SBU Kinect interaction database,which fully proves the effectiveness of the proposed algorithm.
作者 姬晓飞 李晨宇 王昱 JI Xiao-fei;LI Chen-yu;WANG Yu(School of Automation,Shenyang Aerospace University,Shenyang 110136,China)
出处 《沈阳航空航天大学学报》 2020年第6期55-60,共6页 Journal of Shenyang Aerospace University
基金 国家自然科学基金(项目编号:61906125) 辽宁省教育厅科学研究服务地方项目(项目编号:L201708)。
关键词 关节点数据 双人交互动作识别 关节点连接历史图 卷积神经网络 joint data human interaction recognition joint connection history map convolutional neural network
  • 相关文献

参考文献1

二级参考文献3

  • 1郭泉.稀疏表达及其在图像处理中的应用[D].四川大学,2013.
  • 2Lecun Y, Bottou L, Bengio Y, et al. Gradient-Based Learning Applied to Document Recognition [J]. Proceedigs of the IEEE, 1998, 86 ( 11 ): 2278-2324.
  • 3高振涛.判别自动编码机在分类问题中的应用[D].四川大学,2015.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部