期刊文献+

基于时空神经网络的风电场超短期风速预测模型 被引量:28

Ultra-short-term Wind Speed Prediction Model for Wind Farms Based on Spatiotemporal Neural Network
下载PDF
导出
摘要 随着风电场的大规模接入,提高风电场风速的预测精度对于促进可再生能源的消纳具有重大意义。传统的预测方法通常根据风电场单一高度的历史风速进行预测,当预测的时间尺度达到三四小时的时候,预测误差较大。不同高度的风速、风向数据蕴含了风电场内部的时空相关性,数值天气预报数据也体现了风电场周边的大气运动对风速发展规律的影响。文中在输入数据层面,同时引入了不同高度的风速、风向数据和数值天气预报数据。为了充分挖掘数据中的规律,提出了一种新的时空神经网络,采用深度卷积神经网络和双向门控循环单元,分别提取风速、风向等历史数据以及数值天气预报的时空特征,并利用融合后的特征进行风速预测。最后,利用中国东北某风电场的实际测量数据,验证了算法的有效性。 With the large-scale integration of wind farms, improving the prediction accuracy of wind speed in wind farms is of great significance to promote the consumption of renewable energy. Traditional prediction methods are usually based on the historical wind speed of a single altitude in the wind farm. When the prediction horizon reaches about three or four hours, the prediction error becomes relatively large. Wind speed and direction data at different altitudes contain the spatiotemporal correlation and the numerical weather prediction data reflects the influence of atmospheric motion around the wind farm on the variation of wind speed.In this paper, wind speed and direction data at different altitudes and numerical weather prediction data are introduced at the input data level. In order to fully exploit the rules of data, a new spatiotemporal neural network(STNN) is proposed. The deep convolutional network and the bidirectional gated recurrent unit are used to extract the spatiotemporal features of historical wind speed, wind direction and numerical weather prediction, respectively. The fused features are used to predict the wind speed.Finally, the actual measurement data of a wind farm in northeast China is used to verify the effectiveness of the algorithm.
作者 凡航 张雪敏 梅生伟 杨忠良 FAN Hang;ZHANG Xuemin;MEI Shengwei;YANG Zhongliang(Department of Electrical Engineering,Tsinghua University,Beijing 100084,China;State Key Laboratory of Power System and Generation Equipment,Tsinghua University,Beijing 100084,China;Department of Electronic Engineering,Tsinghua University,Beijing 100084,China)
出处 《电力系统自动化》 EI CSCD 北大核心 2021年第1期28-35,共8页 Automation of Electric Power Systems
基金 国家重点研发计划资助项目(2018YFB0904200) 国家电网有限公司科技项目(SGLNDKOOKJJS1800266)。
关键词 风电场 风速预测 时空相关性 可再生能源消纳 卷积神经网络 wind farm wind speed prediction spatiotemporal correlation renewable energy consumption convolutional neural network
  • 相关文献

参考文献15

二级参考文献160

共引文献730

同被引文献323

引证文献28

二级引证文献146

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部