期刊文献+

一类带交叉扩散项的捕食-食饵模型全局分歧研究 被引量:1

Research of Global Bifurcation of a Predator-Prey Model with Cross-Diffusion
下载PDF
导出
摘要 研究了一类具有交叉扩散项的捕食-食饵模型在齐次Dirichlet边界条件下分歧正解的存在性.首先利用极大值原理得到正解的先验估计;接着,借助Crandall-Rabinowitz分歧理论,得到局部分歧正解的存在性;再将局部分歧延拓为全局分歧,从而给出捕食者与食饵在一定条件下可以共存的条件;最后,利用谱分析的方法得到了关于分歧解稳定性的一个条件. In this paper,the existence of positive solution of the steady-state system for the predator-prey model with cross-diffusion is studied under the homogeneous Dirichlet boundary condition.First,by means of maximum principle,a priori estimate is established.Next,by the Crandall-Rabinowitz local bifurcation theory,the existence of local bifurcation solution is obtained.Then,resorting to the global bifurcation theory,the local bifurcation solution is extended to the global bifurcation solution,and the conditions under which the predator and the prey can co-exist are given.Finally,a condition for the stability of bifurcation solution is obtained by spectral analysis.
作者 宋倩倩 李艳玲 SONG Qian-qian;LI Yan-ling(College of Mathematics and Information Science,Shaanxi Normal University,Xi'an 710119,China)
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第1期106-115,共10页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金项目(61672021).
关键词 捕食-食饵 Leslie-Gower型 交叉扩散 全局分歧 谱分析 predator-prey Leslie-Gower cross-diffusion global bifurcation spectral analysis
  • 相关文献

参考文献3

二级参考文献11

  • 1Leslie P H.Some further notes on the use of matrices in population mathematics[J].Biometrika, 1948, 35 (3/4) : 213-245.
  • 2Leslie P H.A stochastic model for studying the properties of certain biological systems by numerical methods [J].Biometrika, 1958,5 (1/2) : 16-31.
  • 3Li Y L, Xiao D M.Bifurcations of a predator-prey system of Holling and Leslie types[J].Chaos, Solitons and Fractals, 2007,34 (2) : 606-620.
  • 4Wang Q,Fan M,Wang K.Dynamics of a class of nonautonomous semi-ratio-dependent predator-prey systems with functional responses[J].J Math Anal Appl,2003,278 (2) :443-471.
  • 5Lou Y,Ni W M.Diffusion vs cross-diffusion:an elliptic approach[J].J Differential Equations, 1999,154( 1 ) : 157-190.
  • 6Smoller J.Shock waves and reaction-diffusion equations[M]. New York:Springer-Verlag, 1983.
  • 7Wu J H.Global bifurcation of coexistence state for the competition model in the chemostat[J].Nonlinear Analysis: Theory, Methods & Applications, 2000,39 (77) : 817-835.
  • 8Ye Q X, Li Z Y.Introduction to reaction-diffusion equations[M].Beijing: Science Press, ! 994 : 262-283.
  • 9Jaeduck J, Ni W M, Tang M X.Global bifurcation and structure of turning patterns in the 1-D Lengyel-Epstein model[J].J Dynam Differential Equations, 2004, 16 (2) : 297-320.
  • 10ZHANG Cun-hua YAN Xiang-ping.Positive Solutions Bifurcating from Zero Solution in a Lotka-Volterra Competitive System with Cross-Diffusion Effects[J].Applied Mathematics(A Journal of Chinese Universities),2011,26(3):342-352. 被引量:8

共引文献12

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部