期刊文献+

使用最小二乘迭代相移方法测量透明元件

Measure transparent elements using least squares iterative phase shift method
下载PDF
导出
摘要 为了更精确地测量透明平板前后两个面的面形相位发布,提出了一种基于最小二乘迭代的相移算法。通过一次最小二乘相移算法后,可以得到相应的透明平板面形图,但是由于初始得到的相位值存在误差,因此得到的面形图精度并不会很高。因此需要通过得到的面形图推导出准确的相位值,本算法通过最小二乘发多次迭代的方法,计算出较准确的初始相移值。对该方法进行仿真实验后,可知此算法的测量精度较高且抗噪能力比较好,仿真得到面形图的PV值与RMS值误差值均小于0.006λ。在实际测量结果中,得到测量结果的PV值误差小于0.09λ,RMS误差小于0.02λ。测量到的面形与物体真实面形接近,测量精度较高。 In order to measure the surface phase of the front and back of the transparent plate more accurately,a phase shift algorithm based on least squares iteration is proposed.After a least squares phase shift algorithm,the corresponding transparent flat surface pattern can be obtained,but the accuracy of the obtained surface map is not high because there is an error in the initial phase value.Therefore,it is necessary to derive the accurate phase value from the obtained surface map.The algorithm calculates the more accurate initial phase shift value by the method of least squares and multiple iterations.After the simulation experiment of the method,it is known that the measurement accuracy of this algorithm is high and the anti-noise ability is better.The error of the PV value and RMS value of the surface map is less than 0.006λ.In actual measurement results,the PV error of the measurement result is less than 0.09λ,and the RMS error is less than 0.02λ.The measured shape is close to the true shape of the object,and the measurement accuracy is high.
作者 李泾渭 辛青 郁杰 侯昌伦 Li Jingwei;Xin Qing;Yu Jie;Hou Changlun(College of Electronic Information,Hangzhou Dianzi University,Hangzhou 310000,China)
出处 《电子技术应用》 2021年第1期100-107,共8页 Application of Electronic Technique
基金 国家重点研发计划重大科学仪器设备开发专项(2016YFF0101908)。
关键词 干涉 最小二乘迭代算法 相移算法 面形检测 多表面干涉 interference least squares iterative algorithm phase shift algorithm shape detection multi-surface interference
  • 相关文献

参考文献4

二级参考文献31

  • 1徐建程,石琦凯,柴立群,邓燕,许乔.三表面干涉条纹空域傅里叶分析[J].中国激光,2006,33(9):1260-1264. 被引量:14
  • 2曹华梁,程祖海,余亮英.用干涉条纹图像重建反射镜的三维面形[J].光学精密工程,2007,15(4):599-603. 被引量:4
  • 3M Kujawifiska, W Osten. Fringe pattern analysis methods: up-to-date review[C]. SPIE, 1998, 3407: 56-64.
  • 4Hou X, Wu F, Yang L, et al. Experimental investigation of testing large aspheric surfaces with annular subaperture interferometric method[C]. SPIE, 2006, 6292 : 1-6.
  • 5Yu Xuelian, Yao Yong, Shi Weijie, et al. Study on an automatic processing technique of the circle interference fringe for fine interferometry[J]. Opt. Int. J. Light Electron. Opt. , 2009, doi:10. 1016/j. ijleo. 2008. 09. 029X.
  • 6J Schwider, R Burow, K Elssner, et al. Digital wavefront measuring interferometer: some systematic error sources [J]. Appl. Opt., 1983, 22(21):3421-3431.
  • 7Erik Novak, Chiayu Ai, James C. Wyant. Errors caused by nearly parallel optical elements in a laser Fizeau interferometer utilizing strictly coherently imaging [C]. SPIE, 1997, 3134:456-460.
  • 8Zhiqiang Liu, Takeshi Gemma, Saori Udagawa et al.. Doublesource interferometry for reducing spurious noise fringes [C]. SPIE, 2004, 5531:193-202.
  • 9Joe Shiefman. Using software to model coherent metrologysystems [C]. SPIE, 2003, 5174:69-82.
  • 10Peter de Groot. Grating interferometer for flatness testing [J]. Opt. Lett. , 1996, 21(3):228-230.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部