期刊文献+

Hilbert空间中连续广义标架的和 被引量:2

Some results on continuous generalized frames in Hilbert spaces
下载PDF
导出
摘要 基于Hilbert空间标架理论,借助算子工具,用己有连续广义标架构造了新连续广义标架,并给出了有限个连续广义标架和构成新连续广义标架的充要条件,为构造连续广义标架提供了新方法。 Based on the frame theorem of Hilbert spaces,a large number of continuous generalized frames are constructed from existing continuous generalized frames by adopting operator methods.Moreover,a necessary and sufficient condition for the finite sum of continuous generalized frames to be a continuous generalized frame is obtained.The results provide new methods to construct continuous generalized frames.
作者 张伟 周静 ZHANG Wei;ZHOU Jing(School of Mathematics and Information Sciences,Henan University of Economics and Law,Zhengzhou 450046,China)
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2021年第1期30-34,共5页 Journal of Zhejiang University(Science Edition)
基金 国家自然科学基金资助项目(11761079) 河南省高等学校重点科研项目(20A110013,21A110004).
关键词 标架 广义标架 连续广义标架 算子 frames generalized frames continuous generalized frames operator
  • 相关文献

参考文献1

二级参考文献30

  • 1Duffin R. J., Schaeffer A. C., A class of nonharmonic Fourier series, Trans. Math. Soc., 1952, 72: 341-366.
  • 2Daubechies I., Grossmann A., Meyer Y., Painless nonorthogonal expansions, J. Math. Phys., 1986, 27: 1271-1283.
  • 3Ferreira P. J. S. G., Mathematics for multimedia signal processing II: Discrete finite frames and signal reconstruction, in: J.S. Byrnes (Ed.), Signal processing for Multimedia, IOS Press, 1999, 35-54.
  • 4Benedetto J. J., Heller W., Irregular sampling and theory of frames, I, Note Mat. X., 1990, 103-125, Suppl. n.1.
  • 5Dudey Ward N. E., Partington J. R., A construction of rational wavelets and frames in Hardy-Sobolev space with applications to system modelling, SIAM J. Control Optim., 1998, 36: 654-679.
  • 6Eldar Y., Forney Jr G. D., Optimal tight frames and quantum measurement, IEEE Trans. Inform. Theory, 2002, 48: 599-610.
  • 7Chan R. H., Riemenschneider S. D., Shen L., et al., Tight frame: An efficient way for high-resolution image reconstruction, Appl. Comput. Harmon. Anal., 2004, 17: 91-115.
  • 8Holmes R. B., Paulsen V. I., Optimal frames for erasures, Linear Algebra Appl., 2004, 377: 31-51.
  • 9Strohmer T., Heath Jr R., Grassmanian frames with applications to coding and communications, Appl. Comput. Harmon. Anal., 2003, 14: 257-275.
  • 10Casazza P. C., The art of frame theory, Taiwan Residents J. Math., 2000, 4(2): 129-201.

共引文献6

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部