期刊文献+

融合表情符号图像特征学习的微博情感分类 被引量:5

Incorporating image features of emoticons into microblog sentiment classification
下载PDF
导出
摘要 表情符号作为一种新兴的网络图形化语言,由于能够直观地表达用户的情感和态度,因此在社交平台被广泛使用.现有的利用表情符号进行微博情感分类的研究主要考虑表情符号的文本特征,这样的做法不能很好的捕捉表情符号之间更细粒度的联系,并无法适应表情的不断发展与变化.针对现有研究存在的问题,本文提出了一种基于卷积自编码器的表情图像特征学习的微博情感分类模型.该模型通过卷积自编码器捕捉的表情符号的图像特征,然后将图像的嵌入表达融入到微博的文本特征中,再利用多层感知机进行情感分类.该模型分别在中文和英文微博的数据集上和现有的方法进行了对比,实验证明,本文的方法优于现有的方法,并且在新表情和跨语言环境下的泛化能力更强. Emoticon,as an emerging network graphic language,is widely used on the social platform due to its ability to express the sentiment and attitude of users intuitively.The current studies take emoticons as text features so that they can neither capture more fine-grained correlations between emoticons,nor can they adapt to the development and change of emoticons.In order to overcome the above difficulties,we propose an emoticon-image-feature learning method based on Convolutional Auto Encoder(CAE)for microblog sentiment classification.Our model can learn image features of emoticons by CAE automatically,and such features are incorporated into the embedding representations of microblogs for sentiment classification.We verify the effectiveness of our proposed model on Chinese microblog and twitter datasets,respectively.The experimental results demonstrate that our model outperforms the state-of-art methods,and the image features learned by our proposed model have stronger generalization ability even with new emoticons in cross-language environment.
作者 陈黎 刘雨欣 周耘立 吴妍秀 于中华 CHEN Li;LIU Yu-Xin;ZHOU Yun-Li;WU Yan-Xiu;YU Zhong-Hua(College of Computer Science,Sichuan University,Chengdu 610065,China;College of Software,Sichuan University,Chengdu 610065,China)
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第1期68-74,共7页 Journal of Sichuan University(Natural Science Edition)
基金 四川省重点研发项目(2019YFG0521)。
关键词 表情符号 情感分类 卷积自编码 微博 Emoticon Sentiment classification Convolutional auto encoder Microblog
  • 相关文献

参考文献13

二级参考文献117

  • 1张珊,于留宝,胡长军.基于表情图片与情感词的中文微博情感分析[J].计算机科学,2012,39(S3):146-148. 被引量:55
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:327
  • 3Andreevskaia A,Bergler S.Mining WordNet for a fuzzy senti-ment:Sentiment tag extraction from WordNet glosses. Pro-ceedings of the European Chapter of the Association for Compu-tational Linguistics (EACL) . 2006
  • 4Kanayama H,Nasukawa T.Fully automatic lexicon expansionfor domain-oriented sentiment analysis. Proceedings of theConference on Empirical Methods in Natural Language Proces-sing (EMNLP) . 2006
  • 5Turney P.Thumbs up or thumbs down Semantic orientationapplied to unsupervised classification of reviews. Procee-dings of the Association for Computational Linguistics (ACL) . 2002
  • 6Wei Jin,Ho H H,SrihariR K.OpinionMiner:A novel machinelearning system for web opinion mining and extraction. Proceedings of the 15th ACM SIGKDD .
  • 7Prabowo R,Thelwall M.Sentiment analysis:A combined ap-proach. Journal of Informetrics . 2009
  • 8Go A,Huang L,Bhayani R.Twitter sentiment classification u-sing distant supervision. CS224NProject Report . 2009
  • 9Pak A,Paroubek P.Twitter as a corpus for sentiment analysisand opinion mining. Proceedings of the Seventh Conferenceon International Language Resources and Evaluation . 2010
  • 10Bo Pang,Lillian Lee,Shivakumar Vaithyanathan.Thumbs up? sentiment classification using machine learning techniques. Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing (EMNLP) . 2002

共引文献2677

同被引文献33

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部