期刊文献+

基于特征数不变量的插针特征点匹配算法研究 被引量:1

Research on Pin Feature Point Matching Algorithm Based on Characteristic Number Invariant
下载PDF
导出
摘要 针对电连接器插针匹配过程中特征点存在的近似对称以及在不同图像间存在大角度旋转变换的问题,提出了一种基于六点特征数不变量的特征点匹配算法。将特征点分为凸包与内点两部分,利用凸包上的点在射影变换中排列顺序的不变性实现了凸包匹配,利用以凸包特征点为基准的内点特征向量的相似性实现了内点匹配。实验结果证明,提出的算法能够很好地实现对插针特征点的匹配,具有一定的鲁棒性。 Aiming at the problem of approximate symmetry of the feature points in the pin matching process of the electrical connector and the large-angle rotation transformation between different images,it proposes a feature point matching algorithm based on the invariant of the sixpoint characteristic number.In this paper,the feature points were divided into two parts of convex hull and interior point.Then the invariance of the order of the points on the convex hull in the projective transformation was used to achieve the convex hull matching,and the similarity of interior point feature vectors based on convex hull feature points was used to achieve the interior point matching.The experimental results prove that the proposed algorithm can achieve the matching of the pin feature points well with certain robustness.
作者 李慧鹏 李科 LI Huipeng;LI Ke(Dept.of Instrument Science and Opto-electronics Engin.,Beihang University,Beijing 100191,CHN)
出处 《半导体光电》 CAS 北大核心 2020年第6期865-869,共5页 Semiconductor Optoelectronics
关键词 电连接器 特征点匹配 特征数不变量 凸包 electrical connector feature point matching characteristic number invariant convex hull
  • 相关文献

参考文献5

二级参考文献28

  • 1袁贞明,吴飞,庄越挺.基于视觉特征的多传感器图像配准[J].中国图象图形学报,2005,10(6):767-772. 被引量:4
  • 2Harris C, Stephens M. A combined corner and edge detector [C] //Proceedings of the Alvey Vision Conference, Manchester, 1988:147-151.
  • 3Mikolajczyk K, Schmid C. Scale and affine invariant interest point detectors [J]. International Journal of Computer Vision, 2004, 60(1): 63 86.
  • 4Yi S, Labate D, Easley G R, et al. A shearlet approach to edge analysis and detection [J]. IEEE Transactions on Image Processing, 2009, 18(5): 929-941.
  • 5Grauman K, Darrell T. The pyramid match kernel: discriminative classification with sets of image features [C] // Proceedings of the 10th IEEE International Conference on Computer Vision, Beijing, 2005:1458-1465.
  • 6Bhowmick P, Pradhan R K, Bhattacharya B B. Approximate matching of digital point sets using a novel angular tree [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(5): 769-782.
  • 7Bai X, Sapiro G. Geodesic matting: a framework for fast interactive image and video segmentation and matting [J]. International Journal of Computer Vision, 2009, 82(2); 113- 132.
  • 8Lhuillier M, Quan L. Match propagation for image-based modeling and rendering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(8) : 1140-1146.
  • 9Kostliva J, Cech J, Sara R. Feasibility boundary in dense and semi-dense stereo matching [C] //Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, 2007:1-8.
  • 10Kannala J, Rahtu E, Brandt S S, et al. Ohject recognition and segmentation by non rigid quasi-dense matching [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, 2008 : 1-8.

共引文献52

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部