期刊文献+

基于改进Camshift算法的NAO机器人目标跟踪 被引量:5

NAO Robot Target Tracking Based on Improved Camshift Algorithm
下载PDF
导出
摘要 针对Camshift算法应用于NAO机器人目标跟踪过程中,当目标受到相似颜色背景干扰或被物体遮挡时跟踪失败的问题,提出一种基于ORB特征检测和Kalman滤波多算法结合的目标跟踪方法。首先检测目标ORB特征点初始化搜索窗口,然后利用Kalman滤波作为目标运动状态的预测机制,以预测的位置初始化Camshift算法。利用Bhattacharyya距离判断跟踪窗口的收敛性,若受到背景干扰,则利用ORB算法对当前帧中的Kalman预测区域和目标模型进行特征点匹配,重新检测目标在视频帧中的位置。根据Kalman滤波预测目标被物体遮挡后可能的位置来更新预测器参数。实验结果表明,改进的算法能够在相似颜色背景干扰和目标遮挡的复杂环境下,连续稳定地跟踪运动目标。 When Camshift algorithm is applied to target tracking of NAO robot,the tracking fails if the target is interfered by similar color background or blocked by objects.A target tracking method based on ORB feature detection and Kalman filter is proposed.Firstly,it is to detect the target ORB signature point and initialize the search window.Then Kalman filter is used as the prediction mechanism of target motion state to initialize Camshift algorithm with the predicted position.The Bhattacharyya distance is used to determine the convergence of the trace window.If background interference occurs,the ORB algorithm is used to match feature points between Kalman prediction area and target model in the current frame,and the position of the target in the video frame is redetected.According to Kalman filter,the possible position of the target after it is blocked by the object is updated.The experimental results show that the improved algorithm can continuously and stably track moving targets under the complex environment of similar color background interference and target occlusion.
作者 王立玲 单忠宇 马东 王洪瑞 WANG Liling;SHAN Zhongyu;MA Dong;WANG Hongrui(College of Electronic and Information Engineering,Hebei University,Baoding 071002,CHN;Key Laboratory of Digital Medical Engineering of Hebei Province,Baoding 071002,CHN)
出处 《半导体光电》 CAS 北大核心 2020年第6期896-901,906,共7页 Semiconductor Optoelectronics
基金 国家自然科学基金项目(61703133) 国家重点研发计划项目(2017YFB1401200)。
关键词 目标跟踪 仿人机器人NAO CAMSHIFT KALMAN滤波 ORB特征点 target tracking humanoid robot NAO Camshift Kalman filter ORB feature points
  • 相关文献

参考文献3

二级参考文献28

  • 1张宏志,张金换,岳卉,黄世霖.基于CamShift的目标跟踪算法[J].计算机工程与设计,2006,27(11):2012-2014. 被引量:57
  • 2Bradski G R. Real-time face and object tracking as a component of a perceptual user interface[A].Washington D C,USA:IEEE Computer Society,1998.214-219.
  • 3Bradski G R. Computer vision face tracking for use in a perceptual user interface[J].Intel Technology Journal(51535-864X),1998,(02):1-15.
  • 4Wang Zhaowen,Yang Xiaokang,Xu Yi,Yu Songyu. CamShift guided particle filter for visual tracking[J].Pattern Recognition Letters,2009,(04):407-413.
  • 5Ruiming Liu,Xuelong Li,Lei Han,Jiao Meng. Track infrared point targets based on projection coefficient templates and non-linear correlation combined with Kalman prediction[J].Infrared Physics and Technology,2013,(03):68-75.
  • 6Karavasilis V,Nikou C,Likas A. Visual tracking using the Earth mover's distance between Gaussian mixtures and Kalman filtering[J].IMAGE AND VISION COMPUTING,2011,(04):295-305.
  • 7Mazinan A H,Amir-Latifi A. Applying mean shift,motion information and Kalman filtering approaches to object tracking[J].ISA Transactions,2012,(05):485-497.
  • 8Kalia R,Lee K D,Samir B V R,et al.An analysis of the effect of different image preprocessing techniques on the performance of SURF:Speeded up robust features[C]//17th Korea-Japan Joint Workshop on Frontiers of Computer Vision.IEEE,2011:1-6.
  • 9Luo Z,Chen S,Yong F U,et al.Research on video surveillance technology based on ONVIF standard[J].Journal of Chengdu University,2013,32(4):378-382.
  • 10W3school.WSDL文档结构[EB/OL].http://www.w3school.com.cn/wsdl/wsdl_documents.asp,2014.

共引文献231

同被引文献72

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部