期刊文献+

沿齐次曲线的振荡积分在Wiener共合空间上的有界性

Oscillatory integrals along homogeneous curves on Wiener amalgam space
下载PDF
导出
摘要 定义沿齐次曲线的振荡积分Tn,α,βf(x)=p.v.∫-1^1f(x-Γθ(t))e^-2πi|t|^-β/t|t|^αdt,x∈R^n,α,β>0,其中Γθ(t)为R^n中的齐次曲线。本文考虑了上述算子在Wiener共合空间W(fL^p,L^q)(R^n)上的有界性。结果表明Wiener共合空间可看作经典Lebesgue空间的良好替代。 Let oscillatory integrals along homogeneous curves be defined by Tn,α,βf(x)=p.v.∫-1^1f(x-Γθ(t))e^-2πi|t|^-β/t|t|^αdt,x∈R^n,α,β>0,β>0,WhereΓθ(t)be homogeneous curves on R^n.The mainly task of this paper is to consider the boundedness of this integral operators on Wiener amalgam space W(fL^p,L^q)(R^n).The result shows that Wiener amalgam spaces are good substitutions for Lebesuge spaces.
作者 刘慧慧 赵金虎 LIU Huihui;ZHAO Jinhu(School of Mathematics and Statistics,Fuyang Normal University,Fuyang Anhui 236037,China)
出处 《阜阳师范大学学报(自然科学版)》 2020年第4期1-5,共5页 Journal of Fuyang Normal University:Natural Science
基金 安徽省自然科学基金项目(1908085QA10)资助。
关键词 振荡积分 Wiener共合空间 调幅空间 齐次曲线 oscillatory integrals Wiener amalgam space modulation space homogeneous curves
  • 相关文献

参考文献2

二级参考文献7

  • 1FAN DaShan,WU HuoXiong.Certain oscillatory integrals on unit square and their applications[J].Science China Mathematics,2008,51(10):1895-1903. 被引量:6
  • 2Zielinski, M.: Highly Oscillatory Singular Integrals along Curves, Ph.D Dissertation, University of Wiscons- in-Madison, Madison WI, 1985.
  • 3Chandarana, S.: L^P-bounds for hypersingular integral operators along curves. Pacific J. Math., 175(2), 389-416 (1996).
  • 4Chandarana, S.: Hypersigular integral operators along space curves. Preprint.
  • 5Chen, J. C., Fan, D., Wang, M., et al.: LP bounds for oscillatory hyper-Hilbert transform along curves. Proc. Amev. Math. Soc., 136(9), 3145-3153 (2008).
  • 6Chen, Y. P., Ding, Y., Fan, D.: A parabolic singular integral operator with rough kernel. J. Aust. Math. Soe., 84(2), 163-179 (2008).
  • 7Stein, E. M.: Harmonic Analysis Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton, N J, 1993.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部