期刊文献+

Deciphering the Origins of P1-Induced Power Losses in Cu(In_(x),Ga_(1–x))Se2(CIGS)Modules Through Hyperspectral Luminescence

下载PDF
导出
摘要 In this report,we show that hyperspectral high-resolution photoluminescence mapping is a powerful tool for the selection and optimiz1ation of the laser ablation processes used for the patterning interconnections of subcells on Cu(Inx,Ga1-x)Se2(CIGS)modules.In this way,we show that in-depth monitoring of material degradation in the vicinity of the ablation region and the identification of the underlying mechanisms can be accomplished.Specifically,by analyzing the standard P1 patterning line ablated before the CIGS deposition,we reveal an anomalous emission-quenching effect that follows the edge of the molybdenum groove underneath.We further rationalize the origins of this effect by comparing the topography of the P1 edge through a scanning electron microscope(SEM)cross-section,where a reduction of the photoemission cannot be explained by a thickness variation.We also investigate the laser-induced damage on P1 patterning lines performed after the deposition of CIGS.We then document,for the first time,the existence of a short-range damaged area,which is independent of the application of an optical aperture on the laser path.Our findings pave the way for a better understanding of P1-induced power losses and introduce new insights into the improvement of current strategies for industry-relevant module interconnection schemes.
出处 《Engineering》 SCIE EI 2020年第12期1395-1402,共8页 工程(英文)
基金 the DFG research training group GRK 1896 at Erlangen University and from the Joint Project Helmholtz-Institute Erlangen-Nürnberg(HI-ERN)for Renewable Energy Production under Project DBF01253,respectively financial support through the“Aufbruch Bayern”initiative of the state of Bavaria(EnCN and Solar Factory of the Future)and the“Solar Factory of the Future”with the Energy Campus Nürnberg(EnCN).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部