期刊文献+

基于机器学习模型预测A股市场高送转股票 被引量:1

Prediction of Highly Convertible Stocks in A-share Market Based on Machine Learning Model
下载PDF
导出
摘要 A股高送转作为我国政策特有的现象,对其精确、有依据的预测有一定的研究价值.本文对A股数据集进行缺失值、异常值、标准化等数据处理,采取特征选择中过滤法、包裹法、嵌入法等方法提取特征,结合经济学意义得到最终特征.数据的不平衡采取过采样、欠采样以及SMOTE采样等方法处理.最后采用基于Stacking算法融合模型,第1层学习器采用5种分类机器学习模型,并进行超参数调整;第2层采用LightGBM模型预测,以F1分数为评价指标,进行对A股市场预测哪些公司可能会实施高送转. As a special phenomenon of our country′s policy,the high transfer of A-share has certain research value for its accurate and reasonable prediction.In this paper,the A-share data set is processed with missing value,abnormal value,and standardization,and the features are extracted by filtering,wrapping,and embedded methods in feature selection,and the final features are obtained by combining the economic significance.Data imbalance is processed by methods such as over-sampling,under-sampling and SMOTE sampling.Finally,a fusion model based on the stacking algorithm is used.In the first layer,5 classification machine learning models are used,and the hyperparameters are adjusted.In the second layer,LightGBM model,along with the F1 score as evaluation indicators,are used to predict which companies in the Ashare market may implement high conversion.
作者 蔡景波 蔡志杰 CAI Jingbo;CAI Zhijie(Shenzhen Diankuan Network Technology Co.,Ltd.,Shenzhen,Guangdong 518000,China;School of Mathematical Sciences,Fudan University,Shanghai 200433,China;Shanghai Key Laboratory for Contemporary Applied Mathematics,Shanghai 200433,China;Key Laboratory of Nonlinear Mathematical Models and Methods of Ministry of Education,Shanghai 200433,China)
出处 《数学建模及其应用》 2020年第4期74-84,F0003,共12页 Mathematical Modeling and Its Applications
关键词 特征选择 机器学习 集成学习 不平衡处理 高送转 feature selection machine learning integrated learning imbalance processing highly convertible stocks
  • 相关文献

参考文献3

二级参考文献23

共引文献125

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部