期刊文献+

2类墨西哥帽小波函数作用下的Logistic映射动力学 被引量:1

The effects of the two kinds of Mexican Hat wavelet function on the dynamics of Logistic map
下载PDF
导出
摘要 目的研究墨西哥帽小波函数和不变顶点墨西哥帽小波函数对Logistic映射动力学的影响。方法基于理论分析与数值模拟相结合的方法,通过观察受调制之后的Logistic映射的分岔图,以及引进2个刻画分岔图的典型序参量,揭示2类墨西哥帽小波函数对Logistic映射的影响规律。结果这2类小波函数都能够使Logistic映射同时发生显著的拉伸和倍周期分岔点位置的改变现象。在大宽度调制作用下,不变顶点墨西哥帽小波函数对Logistic映射的影响会逐渐趋于一个稳定状态。通过对调制因子值域上下界的深入分析,揭示了这2类小波函数能够产生这种调制效果的潜在机理。结论墨西哥帽小波函数能够对Logistic映射动力学产生显著的影响。 Purposes—To study the influence of the Mexican Hat wavelet function and the invariant vertex Mexican Hat wavelet function on the dynamics of Logistic map.Methods—Based on theoretical analysis and numerical simulation,the influence rule of the two kinds of Mexican Hat wavelet function on the Logistic map are revealed by observing the bifurcation diagram of the modulated Logistic map and introducing two typical order parameters to characterize the bifurcation diagram.Result—It is found that the bifurcation diagram is significantly stretched and the positions of period-doubling bifurcation points are changed.Under the action of large width modulation,the influence of the invariant vertex Mexican Hat wavelet function on Logistic map tends to be stable.The potential modulation mechanism induced by the Mexican Hat wavelet function is revealed by analyzing the upper and lower bounds of the value domain of modulation factor.Conclusion—The Mexican Hat wavelet can impact the dynamics of Logistic map effectively.
作者 陈旭 柳嘉静 张馳 钱郁 CHEN Xu;LIU Jia-jing;ZHANG Chi;QIAN Yu(Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji 721016, Shaanxi, China)
出处 《宝鸡文理学院学报(自然科学版)》 CAS 2020年第4期52-60,共9页 Journal of Baoji University of Arts and Sciences(Natural Science Edition)
基金 国家自然科学基金面上项目(11675001)。
关键词 小波函数 LOGISTIC映射 调制作用 wavelet function Logistic map modulation effect
  • 相关文献

参考文献3

二级参考文献46

  • 1王兴元,骆超.二维Logistic映射的分岔与分形[J].力学学报,2005,37(3):346-355. 被引量:18
  • 2唐驾时,欧阳克俭.logistic模型的倍周期分岔控制[J].物理学报,2006,55(9):4437-4441. 被引量:17
  • 3杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2000..
  • 4Li, W.-T. Phys. Rev. A 1991, 43, 5240.
  • 5Li, W. Int. J. Bifurcation Chaos 1993, 2, 137.
  • 6Azbel, M. Y. Phys. Rev. Lett. 1995, 75, 168.
  • 7Herzel, H.; Groe, I. PhysicaA 1995, 216, 518.
  • 8Voss, R. F. Fractal 1994, 2, 1.
  • 9Mantegna, R. N.; Buldyrev, S. V.; Goldberger, A. L.;Havlin, S.; Peng, C. K.; Simons, M.; Stanley, H. E. Phys.Rev. E 1995, 52, 2939.
  • 10Dodin, G.; Vandergheynst, P. J. Theor. Biol. 2000, 206,323.

共引文献49

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部