期刊文献+

基于模糊Kalman滤波的港口车辆组合定位方法研究 被引量:2

Research on port vehicle combined positioning method based on fuzzy Kalman filter
下载PDF
导出
摘要 针对北斗卫星导航系统(BDS)/惯性导航系统(INS)组合导航系统在遮挡环境下定位失效这一问题,通过分析组合导航系统中传感器的状态变化对定位精度的影响,设计了一种基于传感器工作状态的模糊逻辑推理系统,并与卡尔曼滤波算法相结合,通过实时调整系统量测噪声方差的方法提高定位精度.在港口环境下的无人车辆上进行了实验,实验表明,提出的方法能有效提高遮挡环境下无人车辆的定位精度,并具有良好的鲁棒性. Aiming at the problems of BDS/INS integrated navigation system positioning failure in the obstructed environment,by analyzing the impact of sensor status changes in the integrated navigation system on positioning accuracy,we design a fuzzy logic inference system based on the status of the system,combined with the Kalman filter algorithm,the positioning accuracy is improved by real-time adjustment of the noise variance of the system measurement.Finally,experiments were carried out on unmanned vehicles in a port environment.Experiment shows that the proposed method can effectively improve the positioning accuracy of unmanned vehicles in an occluded environment,and has good robustness.
作者 杨勇生 迟景成 姚海庆 YANG Yongsheng;CHI Jingcheng;YAO Haiqing(Instate of Logistics Science and Engineening ShangHai Maritime University,Shanghai 201306,China)
出处 《全球定位系统》 CSCD 2020年第6期80-85,共6页 Gnss World of China
关键词 系统工程 组合定位系统 模糊卡尔曼滤波 组合导航 BDS/INS system engineering combined positioning system fuzzy Kalman filter integrated navigation BDS/INS
  • 相关文献

参考文献3

二级参考文献16

共引文献22

同被引文献23

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部