期刊文献+

一类具有非线性发生率的时滞SIQRS无线传感网络蠕虫传播模型Hopf分岔

Hopf bifurcation analysis of a delayed SIQRS wireless sensing network worm propagation model with nonlinear
下载PDF
导出
摘要 研究一类具有非线性发生率的时滞SIQRS蠕虫病毒传播模型,模型中的恢复状态节点由于安装有反病毒软件而具有一定的临时免疫期.首先,以临时免疫期时滞为分岔参数,通过分析模型特征方程根的存在情况,研究其Hopf分岔的存在性及其存在的条件.然后,利用Matlab进行仿真模拟,以确认结论的正确性. A delayed SIQRS worm propagation model with nonlinear incidence is studied.Due to the effect of antivirus in recovered nodes,there exists a temporary immunity period delay.First,taking the time delay as a bifurcation parameter,the existence of Hopf bifurcation can be gotten by analyzing the distribution of the root of characteristic equation.Then,some numerical simulations are used to verify the validity of the theoretical analysis.
作者 杨芳芳 段爱华 门秀萍 张子振 Yang Fangfang;Duan Aihua;Men Xiuping;Zhang Zizhen(School of Management Science&Engineering,Anhui University of Finance&Economics,Bengbu 233030,Anhui,China)
出处 《江苏师范大学学报(自然科学版)》 CAS 2020年第4期57-60,共4页 Journal of Jiangsu Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(61773181) 安徽省高校自然科学研究重点项目(KJ2020A0002,KJ2020A0014,KJ2020A0016) 安徽财经大学研究生创新基金项目(ACYC2019215)。
关键词 临时免疫期时滞 SIQRS模型 HOPF分岔 temporary immunity period delay SIQRS model Hopf bifurcation
  • 相关文献

参考文献4

二级参考文献14

  • 1I KEPHART J O, WHITE S R. Directed graph epidemiological model of computer viruses [ C ] / / Proceedings of the 1991 IEEE Symposium on Security and Privacy. Washington DC: IEEE Computer Society, 1991:343 - 359.
  • 2HAN X, TAN Q. Dynamical behavior of computer virus on Interuet [ D ]. Appl. Math. Comput, 2010 ( 217) : 2520-2526.
  • 3BIMAL K, NAVNIT J. SEIQRS model for the transmission of malicious objects in computer network [ J ]. Applied Mathematical Modelling, 2010 (34) : 710-715.
  • 4Piqueira J. tL C, Araujo V. O. A modified epidemiological model for computer viruses [J]. Applied Mathematics and Computation, 2009,213(2) : 355-360.
  • 5Peng M, He X, Huang J. J, Dong T. Modelling computer virus and its dynamics [J]. Mathematical Problems in Engineer- ing, vol. 2013, Article ID 842614, 5 pages.
  • 6Li X. L, Wei J. J. On the zeros of a fourth degree exponential polynomial with applications to a neural network model with delays [J]. Chaos, Solitons and Fractals, 2005, 26(2).519-526.
  • 7Hassard 13. D, Kazarinoff N. D, Wan Y. H. Theory and Applications of Hopf Bifurcation [M]. Cambridge University Press, Cambridge (1981).
  • 8冯丽萍,王鸿斌,冯素琴.改进的SIR计算机病毒传播模型[J].计算机应用,2011,31(7):1891-1893. 被引量:37
  • 9万维明,徐婧.具有时滞隔离项的SIQR传染病模型的稳定性分析[J].大连交通大学学报,2011,32(4):99-102. 被引量:2
  • 10肖丽,包骏杰,冯丽萍.一种新的计算机病毒模型的稳定性分析[J].湘潭大学自然科学学报,2012,34(2):94-96. 被引量:12

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部