摘要
研究了一类考虑媒体报道影响和垂直传染的随机SIS传染病模型的动力学行为。首先,证明了系统的全局正解的存在唯一性,同时分析了模型在相应确定性模型的地方病平衡点附近的渐近行为。其次,通过构造恰当的Lyapunov函数,得到了疾病灭绝的条件以及系统具有唯一遍历平稳分布的充分条件。最后,通过数值模拟验证了所得结论的正确性。
The dynamics of a stochastic SIS epidemic model with vertical transmission and media coverage was investigated.The existence and uniqueness of the global position solution of the model was proved,and the asymptotic behavior around the endemic equilibrium of the corresponding deterministic model was analyzed.Then,by constructing a suitable Lyapunov function,the sufficient conditions for the extinction of disease as well as the existence of unique ergodic stationary distribution were obtained.Numerical simulations were displayed to support the theoretical results.
作者
马莎莎
马纪英
MA Shasha;MA Jiying(College of Science,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处
《上海理工大学学报》
CAS
CSCD
北大核心
2020年第6期533-542,共10页
Journal of University of Shanghai For Science and Technology
基金
国家自然科学基金资助项目(11501364)
上海理工大学科技发展项目(2018KJFZ148,2019KJFZ171,2020KJFZ161)。
关键词
媒体报道
垂直传染
LYAPUNOV函数
灭绝
遍历平稳分布
media coverage
vertical transmission
Lyapunov function
extinction
ergodic stationary distribution