期刊文献+

基于遗传算法和Python多处理器并行计算的二阶热传导方程初边值问题数值解法 被引量:3

Numerical Solution for a Kind of Second Order Heat Conduction Equation with Initial-boundary Value Problems Based on Genetic Algorithm and Python Multiprocessor Parallel Computing
下载PDF
导出
摘要 针对二阶热传导非线性偏微分方程初边值问题,对求解矩形区域进行离散网格化处理,构造差分格式的极小化目标函数,将当前计算结点作为目标函数的参数,把遗传算法参数寻优的结果作为当前结点的函数值.同时,使用了Python中的多处理器模块进行并行计算,以提高计算速度.实验结果表明,该方法可以获得较高的计算精度,且稳定有效. For second-order nonlinear heat conduction equation with initial-boundary value problems,it first the solution of rectangular region is discretized and meshed,and the objective function of minimization of difference scheme is constructed.Then the current calculation node is taken as the parameter of the objective function,and the result of optimization of genetic algorithm is taken as the function value of current node.At the same time,the multiprocessor module in Python is used for parallel computing to improve the computing speed.The experimental results show that the method can obtain high accuracy and is stable and effective.
作者 李丙春 LI Bing-chun(College of Compoter Science and Technolog,Kashi University,Kashi 844000,Xinjiang,China)
出处 《喀什大学学报》 2020年第6期53-56,共4页 Journal of Kashi University
关键词 遗传算法 Python多处理器并行计算 二阶热传导非线性偏微分方程 初边值问题 genetic algorithm Python multiprocessor parallel computing second-order nonlinear heat conduction initial-boundary value problems
  • 相关文献

参考文献4

二级参考文献46

  • 1谢元喜,唐驾时.求一类非线性偏微分方程解析解的一种简洁方法[J].物理学报,2004,53(9):2828-2830. 被引量:53
  • 2郑连存,冯志丰,张欣欣.一类非线性微分方程的近似解析解[J].物理学报,2007,56(3):1549-1554. 被引量:3
  • 3Benzi R, Succi S, Vergassola M. The lattice Boltzmann equation: theory and applications[ J]. Physics Reports, 1992, 222(3) : 145-197.
  • 4CHEN Shi-yi, Doolen G D. Lattice Boltzmann method for fluid flows [ J ]. Annual Review of Fluid Mechanics, 1998, 30: 329-364.
  • 5Qian Y H, Succi S, Orszag S A. Recent advances in lattice Boltzmann computing[ J ]. Annual Reviews of Computational Physics, 1995, 3: 195-242.
  • 6Dawson S P, Chen S, Doolen G D. Lattice Boltzmann computations for reaction-diffusion e- quations[J]. The Journal of Chemical Physics, 1993, 98(2) : 1514-1523.
  • 7Ginzburg I. Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation[ J]. Advances in Water Resources, 2005, 28( 11 ) : 1171-1195.
  • 8Shi B, Guo Z. Lattice Boltzmann model for nonlinear convection-diffusion equations [ J ]. Physical Review E, 2009, 79( 1/2): 016701.
  • 9Liu F, Shi W P. Numerical solutions of two-dimensional Burgers' equations by lattice Boltz- mann method[ J] 16(1) : 150-157.
  • 10YANG Xu-guang, SHI Bao-chang, CHAI Zhen-hua. Coupled lattice Boltzmann method for gen- eralized Keller-Segel chemotaxis model[ J ]. Computers & Mathematics With Applications, 2014, 68(12) : 1553-1570.

共引文献16

同被引文献7

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部