期刊文献+

应用正交试验法冷却风机结构参数优化设计

Optimization Design of Cooling Fan Structure Parameters Based on Orthogonal Experiment Method
下载PDF
导出
摘要 强制通风冷却是电驱动式自卸车轮边驱动电机冷却的重要形式,需要设计专门的冷却风机和冷却风道,冷却风机的性能直接影响系统的正常工作;安装空间限制了冷却风机的尺寸,根据某车型的结构尺寸和冷却系统的结构特点,选用离心式冷却风机,对其结构参数进行设计和分析;基于计算流体力学仿真分析对影响风机性能的结构参数进行单因素分析,获得参数对气动性能的影响规律,获取主要的影响因素;基于正交试验法,对多因素组合对冷却风机性能的影响进行分析,获取最优组合,从而对冷却风机的结构参数进行优化。采用冷却风道对优化前后风机的性能进行对比分析;结果可知:优化后风机流量为4.36m~3/s,消耗的功率为34.2kW,比原始设计模型流量增加了19.8%,而功率只增加了16.3%;对优化模型的试验结果也说明风机的性能有了明显的提升,对风机的整体优化具有指导意义。 Forced ventilation cooling is an important form of electrically driven dump wheel drive motor cooling.Special cooling fan and cooling duct need to be designed.The performance of cooling fan directly affects the normal operation of the system.According to the structural size of a car and the structural characteristics of the cooling system,centrifugal cooling fan is selected to design and analyze its structural parameters.Based on computational fluid dynamics simulation analysis,single factor analysis is carried out on the structural parameters that affect the performance of the fan.The influence law of parameters on aerodynamic performance is obtained,and the main influencing factors are obtained.Based on orthogonal test method,the effect of multifactor combination on cooling fan performance is analyzed to obtain the optimal combination to optimize the structural parameters of the cooling fan.The performance of the fan before and after optimization is compared and analyzed by using cooling duct and cooling duct.The results show that the optimized fan flow is 4.36 m cubed/s,and the power consumed is 34.2 kW,which increased by 19.8%compared with the original design model flow,while the power only increased by 16.3%.The test results of the optimized model also show that the performance of the fan has improved significantly,which is of guiding significance to the overall optimization of the fan.
作者 王水生 于国庆 武慧芳 WANG Shui-sheng;YU Guo-qing;WU Hui-fang(Hebei Tourism Vocational College,Hebei Chengde067000,China;Hebei University of Science and Technology,Hebei Shijiazhuang050018,China)
出处 《机械设计与制造》 北大核心 2021年第1期125-129,133,共6页 Machinery Design & Manufacture
基金 河北省科技计划项目(16211214D)。
关键词 冷却风机 计算流体力学 正交试验法 风洞 Cooling Fan Computational Fluid Dynamics Method Orthogonal Experiment Method Wind Tunnel Test
  • 相关文献

参考文献7

二级参考文献47

  • 1杨杰,孙刚,文国军.风机流场的数值模拟分析[J].武汉理工大学学报(交通科学与工程版),2004,28(5):763-765. 被引量:10
  • 2周笃高,周江.低压轴流风机性能优化及特性数值计算[J].煤炭学报,1996,21(1):101-106. 被引量:6
  • 3梁春华.高性能航空发动机先进风扇和压气机叶片综述[J].航空发动机,2006,32(3):48-52. 被引量:35
  • 4郝勇,李志强,杜发荣,等.大涵道比涡扇发动机的宽弦空心风扇叶片技术研究[c]//大型飞机关键技术高层论坛暨中国航空学会2007年学术年会论文集.北京:中国航空学会动力专业分会,2007:1-6.
  • 5Parker P A, Deloach R. Structural optimization of a force balance using a computational experiment design [R]. AIAA-2002-0540,2002.
  • 6CHANG Kuanghua,Tang P S. An integrated approach for topology and shape optimizations of 3-D structural components[R]. AIAA-2000 1826,2000.
  • 7北京航空材料研究院.航空发动机设计用材料数据手册[M].北京:国防工业出版社,1993.
  • 8吴敏,王益友,上官文斌,等.发动机冷却风扇气动性能的计算方法[J].汽车技术,2009(增刊):8-11.
  • 9MOREAU S, BENNETT E. Improvement of fan design using CFD[EB/OL]. [2013 - 12 - 26]. http: // papers, sae. org/970934/.
  • 10孙晓峰.不等距叶片风机气动声学特性的研究[J].北京航空学院学报,1986(4):137-145.

共引文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部