摘要
本研究对传统仓室SIR模型进行改进,引入Gauss函数模拟COVID-19疫情的日传染率、日隔离率变化情况。采用Runge-Kutta算法有效拟合了湖北地区的疫情发展情况,依此推测出COVID-19的基本再生数R0=2.4817,有效再生数Re=0.9912,验证了COVID-19的高传染性。拟合结果证明,Gauss函数极为有效地反映感染率、确诊率的实际变化情况。因此,通过数学模型分析疫情关键参数对防控具有指导意义。
We improved the SIR model of traditional warehouse and introduced Gaussian function to simulate the daily infection rate and diagnosis rate of COVID-19.The Runge-Kutta algorithm was used to fit the epidemic situation in Hubei.The basic regeneration number of COVID-19 was induced as R0=2.4817 and the effective regeneration number Re=0.9912,which verified the high infectivity of COVID-19.The fitting results showed that Gauss function was very effective in reflecting the actual changes of infection rate and diagnosis rate.So it is of great referential importance for the current epidemic prevention through mathematical model to analyze the key parameters of epidemic situation.
作者
陈高伟
常向荣
陈俊英
CHEN Gaowei;CHANG Xiangrong;CHEN Junying(School of Materials Science and Engineering,Southwest Jiaotong University,Chengdu 610031,China)
出处
《生物医学工程研究》
2020年第4期369-372,共4页
Journal Of Biomedical Engineering Research
基金
四川省2018-2020年高等教育人才培养质量和教学改革项目(JG2018-122)
新工科背景下生医专业创新人才培养与支撑体系的建设(20201021)
西南交通大学"抗击新型冠状病毒"应急科研专项。