期刊文献+

基于改进K-means算法的电子商务客户细分研究 被引量:9

Research on e-commerce customer segmentation basedon improved K-means clustering
下载PDF
导出
摘要 目的:针对传统K-means算法需要人为设定K值的缺陷,提出改进的K-means算法,并将其应用于电子商务客户细分研究。方法:首先,在经典RFM模型的基础上,增加客户消费行为特征;其次,为确定最佳聚类数目,引入CH评价指标,以对K-means算法进行改进;最后,选取了包含37376个样本的电子商务客户数据集进行实证研究。结果:与拐点法相比,通过CH指标确定K值更加直观;与谱聚类相比,加入CH指标的K-means算法具有更优的聚类效果及运行效率。结论:结合CH聚类评价质量指标和K-means算法能有效提高电子商务客户细分的准确性和效率。 Aims:In view of the shortcoming of setting K value artificially in the traditional K-means algorithm,we proposed an improved K-means algorithm.This algorithm was employed to segment e-commerce customers.Methods:Firstly,on the base of the RFM model,the features of customer consumption behavior was introduced.Secondly,in order to determine the optimal number of clustering,the CH index was introduced to improve the K-means algorithm.Finally,a dataset with 37,376 samples of e-commerce customers was selected for empirical research.Results:Compared with the inflection point method,K values selected by the CH index was more intuitive.Compared with the spectral clustering,the clustering effect and operating efficiency of the K-means algorithm with the CH index were better.Conclusions:The accuracy and efficiency of e-commerce customer segmentation could be improved effectively by combining the CH index and the K-means algorithm.
作者 靖立峥 吴增源 JING Lizheng;WU Zengyuan(College of Economics and Management,China Jiliang University,Hangzhou 310018,China)
出处 《中国计量大学学报》 2020年第4期482-489,共8页 Journal of China University of Metrology
基金 国家自然科学基金项目(No.71871205) 浙江省自然科学基金项目(No.LY20G010008)。
关键词 K-MEANS聚类 客户细分 消费行为偏好 K-means clustering customer segmentation consumer behavior preference
  • 相关文献

参考文献6

二级参考文献45

  • 1李益强,漆晨曦.基于数据挖掘的电信客户细分研究析[J].广东通信技术,2005,25(5):12-15. 被引量:9
  • 2闫相斌,李一军,叶强.基于购买行为的客户分类方法研究[J].计算机集成制造系统,2005,11(12):1769-1774. 被引量:11
  • 3杨善林,李永森,胡笑旋,潘若愚.K-MEANS算法中的K值优化问题研究[J].系统工程理论与实践,2006,26(2):97-101. 被引量:190
  • 4[美]Steve,Hoberman著;贾爱霞,程耀译.数据建模-分析与设计的工具和技术[M].机械工业出版社,2004:230-256.
  • 5陈金波.面向电信CRM的数据挖掘应用研究[j].南京:东南大学.2007.
  • 6Soper,Suzanne,the evolution of segmentation methods in services:where next ?[J].Journal of Financial Services Marketing,2002,8:68 ~ 69.
  • 7Lazer,William,Life style concept and marketing,toward scientific marketing[M].Stephen Greyser,ed,Chicago:American Marketing Assn.,1963:130.
  • 8Wells,William,Tigert,Doug,Activities,interests,and opinion[J].Journal of Advertising Research,August,1971,11:27 ~ 35.
  • 9Plummer,Joseph T.,The concept and application of life style segmentation[J].Journal of Marketing,Jan 1974,38 (1):34.
  • 10Bushman,F.Anthony,Systematic life styles for new product segmentation[J].Journal of the Academy of Marketing Science,Fall 1982,10(4):381 ~ 391.

共引文献144

同被引文献61

引证文献9

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部