期刊文献+

不含5-圈平面图的边存活率

The edge surviving rate of planar graphs without 5-cycles
下载PDF
导出
摘要 目的:主要研究最小度至少为3且不含5-圈的连通平面图的(4,2)-边存活率。方法:主要利用平面图分离定理和图染色理论中的经典方法权转移进行推导证明。结果:得到了如果G是最小度至少为3的不含5-圈的连通平面图,那么图G的(4,2)-边存活率至少为1/62。结论:当火随机的在最小度至少为3且不含5-圈的连通平面图G的两个相邻顶点燃起时,消防员采取第一步保护4个点,后面每一步保护2个点的防火策略,使得最后获救的顶点数的平均值至少为图G顶点数的1/62。 Aims:This paper aims to study the(4,2)-edge surviving rate of a connected planar graph without 5-cycles and with minimum degrees of at least 3.Methods:Using the planar separator theorem and discharging method,which was a classical method in the graph theory,results were deduced and proved.Results:It was found that if G was a connected planar graph without 5-cycles and with minimum degrees of at least 3,then the(4,2)-edge surviving rate of G was at least 1/62.Conclusions:The expected percentage of vertices that can be saved by the firefighter is at least 1/62 with the strategy that protects 4 vertices at the first step and 2 vertices at subsequent steps,when fires randomly break out at two adjacent vertices of a connected planar graph without 5-cycles and with minimum degrees of at least 3.
作者 郭文婷 孔将旭 GUO Wenting;KONG Jiangxu(College of Sciences,China Jiliang University,Hangzhou 310018,China)
出处 《中国计量大学学报》 2020年第4期519-523,共5页 Journal of China University of Metrology
基金 国家自然科学基金项目(No.11701541,11801512)。
关键词 消防员问题 边存活率 平面图 5-圈 firefighter problem edge surviving plane graph 5-cycles
  • 相关文献

参考文献2

二级参考文献13

  • 1Hartnell B. Firefighter! An application of domination, presentation at the 25th Manitoba conference on combina- torial mathematics and computing[R]. Winnipeg, Canada: University of Manitoba, 1995.
  • 2Cai L,Wang W. The surviving rate of a graph for the fire- fighter problem [J]. SIAM J Discrete Math, 2009, 23: 1814-1826.
  • 3Dezso Z,Barabasi A L. Halting viruses in scale-free net- works [J]. Phys Rev E,2002,65:055103.
  • 4Newman M E,Jensen I, Ziff R M. Percolation and epi-demics in a two-dimensional small world[J]. Phys Rev E, 2002,65 : 021904.
  • 5Pastor-Satorras R, Vespignani A. Epidemic spreading in scale-free networks[J]. Phys Rev Lett, 2001,86 : 3200-3203.
  • 6Finbow S, MacGillivray G. The firefighter problem., a sur- vey of results, directions and questions[J]. Australas J Combin, 2009,43 .. 57-77.
  • 7Cai L,Cheng Y, Verbin E, et al. Surviving rates of graphs with hounded treewidth for the firefighter problem[J]. SIAM J Discrete Math,2010,24:1322-1335.
  • 8Esperet L, van den Heuvel J, Maffray F, et al. Fire con- tainment in planar graphs [J]. J Graph Theory,2013,73.. 267-279.
  • 9Kong J, Wang W, Zhu X. The surviving rate of planar graphs[J]. Theoret Comput Sci, 2012,416 : 65-70. .
  • 10Praat P. Sparse graphs are not flammable[J]. SIAM J Discrete Math,2013,27 ..2157-2166.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部