期刊文献+

重组大肠杆菌全细胞催化D,L-扁桃酸对映选择性制备L-苯甘氨酸 被引量:2

Enantioselective L-Phenylglycine Production from D,L-Mandelic Acid Using Engineered Escherichia coli Whole Cells
下载PDF
导出
摘要 借助pACYCDuet-1和pET28a双质粒共表达系统,构建携带Agrobacteriumradiobacter来源扁桃酸消旋酶(Ar mandelate racemase,Ar MR)、Lactobacillus harbinensi来源D-扁桃酸脱氢酶(Lh D-mandelate dehydrogenase,Lh DMDH)和ExiguobacteriumsibiricumDSM17290来源L-亮氨酸脱氢酶(EsL-leucine dehydrogenase,Es LeuDH)编码基因的重组大肠杆菌,将其命名为E. coli BL21(DE3)/pACYCDuet-1-EsLeuDHLhDMDH:pET28a-ArMR。在低温、低浓度诱导剂的诱导下,该重组菌成功表达了具有各自催化活性的3种重组酶,其发酵液中Lh DMDH、Es LeuDH和Ar MR的活性分别为195.8、56.2 U/mL和174.5 U/mL。以诱导后的全细胞为催化剂、D,L-扁桃酸为底物,在D,L-扁桃酸初始浓度50 mmol/L、pH 9.5的500 mmol/L NH4Cl-NH3·H2O缓冲液体系下,180 r/min、30℃反应48 h后,L-苯甘氨酸得率可达77.48%,其对映体过量值大于99%。本研究具有较大的产业化潜力,为实现L-苯甘氨酸规模化的生物合成奠定了坚实的基础。 In this study, a recombinant Escherichia coli strain carrying D-mandelate dehydrogenase, L-leucine dehydrogenase and mandelate racemase encoding genes was established by using a dual plasmid co-expression system of pACYCDuet-1 and pET28 a, which was named as E. coli BL21(DE3)/pACYCDuet-1-EsLeuDH-LhDMDH:pET28 a-ArMR. Under low temperature and in the presence of low concentrations of the inducer, the recombinant strain successfully expressed three recombinant enzymes with catalytic activities, and the activities of D-mandelate dehydrogenase, L-leucine dehydrogenase and mandelate racemase in its fermentation broth were 195.8, 56.2 and 174.5 U/mL respectively. Using the induced whole cells as the catalyst and D,L-mandelic acid as the substrate, the yield of L-phenylglycine was 77.48% after reaction at 30 ℃ for 48 h in 500 mmol/L NH4Cl-NH3·H2O buffer at pH 9.5 with an agitation rate of 180 r/min with an enantiomeric excess(e.e.) value of greater than 99%. This study has potential for industrial application, laying a solid foundation for large-scale biosynthesis of L-phenylglycine.
作者 贾园园 李祥 张振华 张闪 杨露露 唐存多 JIA Yuanyuan;LI Xiang;ZHANG Zhenhua;ZHANG Shan;YANG Lulu;TANG Cunduo(Henan Provincial Engineering Laboratory of Insect Bio-reactor,Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North,Nanyang Normal University,Nanyang 473061,China;State Key Laboratory of Automotive Biofuel Technology,Nanyang 473061,China)
出处 《食品科学》 EI CAS CSCD 北大核心 2021年第2期83-89,共7页 Food Science
基金 国家自然科学基金青年科学基金项目(31900916) 国家自然科学基金面上项目(31870917) 车用生物燃料技术国家重点实验室开放课题(KFKT2018003) 南阳师范学院青年项目(2018QN004) 河南省科研服务平台专项(2016151) 河南省南水北调中线水源区水生态安全创新型科技团队专项(17454) 河南省高校科技创新团队项目(20IRTSTHN024) 河南省高校省级大学生创新创业训练计划项目(S201910481006)。
关键词 L-苯甘氨酸 全细胞催化 绿色化学 共表达 级联反应 L-phenylglycine whole-cell catalysis green chemistry co-expression cascade reaction
  • 相关文献

参考文献1

二级参考文献28

  • 1LI Jianfang, WEI Xihuan, TANG Cunduo, et al. Directed modificationof the Aspergillus usamii β-mannanase to improve its substrateaffinity by in silico design and site-directed mutagenesis[J]. Journalof Industrial Microbiology and Biotechnology, 2014, 41(4): 693-700.DOI:10.1007/s10295-014-1406-7.
  • 2LI Jianfang, ZHAO Shunge, TANG Cunduo, et al. Cloning andfunctional expression of an acidophilic β-mannanase gene (Anman5A)from Aspergillus niger LW-1 in Pichia pastoris[J]. Journal ofAgricultural and Food Chemistry, 2012, 60(3): 765-773. DOI:10.1021/jf2041565.
  • 3CHAUHAN P S, PURI N, SHARMA P, et al. Mannanases: microbialsources, production, properties and potential biotechnologicalapplications[J]. Applied Microbiology and Biotechnology, 2012,93(5): 1817-1830. DOI:10.1007/s00253-012-3887-5.
  • 4TANG Cunduo, LI Jianfang, WEI Xihuan, et al. Fusing acarbohydrate-binding module into the Aspergillus usamii β-mannanaseto improve its thermostability and cellulose-binding capacity by insilico design[J]. PLoS ONE, 2013, 8(5): e64766. DOI:10.1371/journal.pone.0064766.
  • 5GHOSH A, LUIS A S, BRAS J L A, et al. Thermostable recombinantβ-(1,4)-mannanase from C. thermocellum: biochemical characterizationand manno-oligosaccharides production[J]. Journal of Agricultural andFood Chemistry, 2013, 61(50): 12333-12344. DOI:10.1021/jf403111g.
  • 6FURUYA T, KINO K. Genome mining approach for the discoveryof novel cytochrome P450 biocatalysts[J]. Applied Microbiology andBiotechnology, 2010, 86(4): 991-1002. DOI:10.1007/s00253-010-2450-5.
  • 7GONG Jingsong, LU Zhenming, LI Heng, et al. Metagenomictechnology and genome mining: emerging areas for exploring novelnitrilases[J]. Applied Microbiology and Biotechnology, 2013, 97(15):6603-6611. DOI:10.1007/s00253-013-4932-8.
  • 8CHALLIS G L. Genome mining for novel natural productdiscovery[J]. Journal of Medicinal Chemistry, 2008, 51(9): 2618-2628.DOI:10.1021/jm700948z.
  • 9WINTER R T, HEUTS D P, RIJPKEMA E M, et al. Hot or not-Discovery and characterization of a thermostable alditol oxidasefrom Acidothermus cellulolyticus 11B[J]. Applied Microbiology andBiotechnology, 2012, 95(2): 389-403. DOI:10.1007/s00253-011-3750-0.
  • 10XIAO Z, WU M, GROSSE S, et al. Genome mining for new alphaamylaseand glucoamylase encoding sequences and high levelexpression of a glucoamylase from Talaromyces stipitatus for potentialraw starch hydrolysis[J]. Applied Biochemistry and Biotechnology,2014, 172(1): 73-86. DOI:10.1007/s12010-013-0460-3.

共引文献3

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部