期刊文献+

复杂海战场环境下AUV全局路径规划方法 被引量:13

AUV global path planning method in complex sea battle field environment
下载PDF
导出
摘要 针对无人自主水下航行器(Autonomous Underwater Vehicle,AUV)在复杂海战场环境中路径规划时环境模型复杂、约束条件多的情况,建立了包括战场地形、敌方威胁、障碍物和海流场等在内的比较完善的海战场环境模型。以AUV航行时间、威胁时间最短为优化目标,给出了一种基于振荡型入侵野草优化(Invasive Weeds Optimization,IWO)算法的AUV全局路径规划方法,并分别与标准IWO算法、全振荡型IWO算法以及粒子群算法等三种路径规划算法比较。仿真结果表明,所提方法具有较强的寻优能力和鲁棒性,可在复杂海战场环境下为AUV高效地规划出满足性能要求的航行路径。 In view of the path planning of the unmanned AUV(autonomous underwater vehicle)in the complex sea battlefield environment,the environment model is complex and there are many constraints.A relatively perfect sea battlefield environment model including battlefield shape,enemy threats,obstacles,and sea current field was established.The AUV navigation time and threat time were the shortest as the optimization goal,and an oscillation-based type was given.The AUV global path planning method of the oscillation IWO(invasive weeds optimization)algorithm was compared with other three path planning algorithms,such as the standard IWO algorithm,the full-oscillation IWO algorithm and the PSO(particle swarm optimization)algorithm respectively.Simulation results show that the proposed method which has strong searching ability and excellent robustness,can effectively plan the navigation path which meets the performance requirements for the AUV in the complex sea battlefield environment.
作者 赵苗 高永琪 吴笛霄 王鹏 张洪刚 ZHAO Miao;GAO Yongqi;WU Dixiao;WANG Peng;ZHANG Honggang(College of Weaponry Engineering, Naval University of Engineering, Wuhan 430033, China;College of Missile Engineering, Rocket Force University of Engineering, Xi′an 710025, China)
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2021年第1期41-48,共8页 Journal of National University of Defense Technology
基金 国家部委基金资助项目(3020605010201)。
关键词 无人自主水下航行器 海战场 全局路径规划 振荡型入侵野草优化算法 unmanned autonomous underwater vehicle sea battlefield global path planning oscillation invasive weed optimization algorithm
  • 相关文献

参考文献5

二级参考文献67

  • 1赵文婷,彭俊毅.基于VORONOI图的无人机航迹规划[J].系统仿真学报,2006,18(z2):159-162. 被引量:50
  • 2权宏伟.基于Fisher信息最大化的机载ESM无源定位[J].中南大学学报(自然科学版),2013,44(S2):334-338. 被引量:2
  • 3肖秦琨,高晓光.基于空间改进型Voronoi图的路径规划研究[J].自然科学进展,2006,16(2):232-237. 被引量:9
  • 4Hwang J Y,Kim J S,Lim S S,et al.A fast path planning by path graph optimization[J].IEEE Transactions on Systems,Man,and Cybernetics,Part A,2003,33(1):121-128.
  • 5Sakahara H,Masutani Y,Miyazaki F.Real-time motion planning in unknown environment:A Voronoi-based StRRT (SpatiotemporalRRT)[C] //The Society of Instrument and Control Engineers (SICE) Annual Conference.Hongo,Bunkyo-ku,Tokyo,Japan:SICE,2008:2326-2331.
  • 6Wu X J,Tang J,Li Q,et al.Development of a configuration space motion planner for robot in dynamic environment[J].Robotics and Computer-Integrated Manufacturing,2009,25(1):13-31.
  • 7Carsten J,Ferguson D,Stentz A.3D field D*:Improved path planning and replanning in three dimensions[C] //IEEE/RSJ International Conference on Intelligent Robots and Systems.Piscataway,NJ,USA:IEEE,2006:3381-3386.
  • 8Sathyaraj B M,Jain L C,Finn A,et al.Multiple UAVs path planning algorithms:A comparative study[J].Fuzzy Optimization and Decision Making,2008,7(3):257-267.
  • 9Yang I H,Zhao Y J.Real-time trajectory planning for autonomous aerospace vehicles amidst static obstacles[C] //AIAA's 1st Technical Conference and Workshop on Unmanned Aerospace Vehicles.Reston,VA,USA:AIAA,2002.
  • 10Dolgov D,Thrun S,Montemerlo M,et al.Practical search techniques in path planning for autonomous driving[C] //First International Symposium on Search Techniques in Artificial Intelligence and Robotics (STAIR-08).Menlo Park,CA,USA:2008:32-37.

共引文献48

同被引文献183

引证文献13

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部