期刊文献+

基于扰动观测器和神经网络的自动门系统安全性优化研究 被引量:3

Safety Improvement of Automatic Gate System Based on DisturbanceObserver and Neural Network
下载PDF
导出
摘要 在传统的自动门系统中,只有安装在外部的安全传感器才能检测到自动门中的干扰或碰撞,导致了很多安全事故,因此有必要对自动门的安全性进行改进。基于此,提出了补充外部安全传感器的方法,通过自动建模设计一个扰动观测器,搭建神经网络,并提出一种算法,比较观察到的扰动和神经网络输出的误差。通过实验验证了该技术的有效性和可行性,证明此种方法可以预测安全事故,有效提高自动门的安全性。 For traditional automatic doors,only the external safety sensor can detect the interference or collision in the automatic doors,which has brought a lot of safety accidents,therefore,it is necessary to improve the safety of the automatic doors.The safety improvement of automatic doors was discussed by adding supplementing external safetysensor.Adisturbance observer was designed by automatic modeling,and aneural network was set up with a new algorithm.The error was observed by comparison the observed disturbance with the out put of the neural network.The effectiveness and feasibility of this technology were verified by experiments,which proved that this method can effectively improve the security of automatic doors.
作者 李文萱 殷大澍 刘倩 LI Wen-xuan;YIN Da-shu;LIU Qian(Chuzhou Vocational and Technical College,Chuzhou 239000,China)
出处 《浙江水利水电学院学报》 2020年第6期64-68,84,共6页 Journal of Zhejiang University of Water Resources and Electric Power
基金 安徽省高校优秀青年人才支持计划项目(重点)(GxyqZD2020068)。
关键词 自动门系统 扰动观测器 神经网络 安全改进 automatic door system disturbance observer neural network security improvement
  • 相关文献

参考文献10

二级参考文献45

共引文献38

同被引文献43

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部