期刊文献+

基于卷积神经网络的英文邮件分类 被引量:1

English Mail Classification Based on Convolution Neural Network
下载PDF
导出
摘要 文本信息量呈指数次方急剧增长,比如邮件的数目,信息的容量等,如何高效的处理信息成为关注的焦点,邮件分类可以将垃圾邮件进行过滤,提高工作效率。利用卷积神经网络进行英文邮件中垃圾邮件分类的同时,采用的数据集是Enron邮件数据集,对该数据集进行了数据预处理、卷积神经算法以及训练,最终在英文邮件中垃圾邮件分类的准确率以及分类速度都有明显的提高。 The amount of text information increases exponentially,such as the number of mail and the capacity of information.How to deal with information efficiently is the focus of attention.Mail classification can filter spam and improve work efficiency.This paper uses convolutional neural network to classify English spam.At the same time,the data set is Enron mail data set.The data set is preprocessed,together with convolutional neural algorithm and training.Finally,the accuracy and classification speed of English spam classification are improved obviously.
作者 王芳 WANG Fang(School of Computer Science and Technology,Taiyuan University of Science and Technology,Taiyuan 030024,China)
出处 《太原科技大学学报》 2021年第1期13-19,共7页 Journal of Taiyuan University of Science and Technology
关键词 电子邮件 卷积神经网络 邮件分类 e-mail convolutional neural network mail classification
  • 相关文献

参考文献5

二级参考文献92

  • 1李渝勤,孙丽华.基于规则的自动分类在文本分类中的应用[J].中文信息学报,2004,18(4):9-14. 被引量:20
  • 2张铭锋,李云春,李巍.垃圾邮件过滤的贝叶斯方法综述[J].计算机应用研究,2005,22(8):14-19. 被引量:23
  • 3王斌,潘文锋.基于内容的垃圾邮件过滤技术综述[J].中文信息学报,2005,19(5):1-10. 被引量:129
  • 412321网络不良与垃圾信息举报受理中心[EB/OL].2010-06-13.bttp:///www.12321.cn/viewnews.php?id=12858.
  • 5中国互联网协会.中国互联网协会反垃圾邮件规范[EB/OLl.2003-02-26.http://www.isc.org.cn/20020417/cal34119.htm.
  • 6Iwanaga M, Tabata T, Sakurai K. Evaluation of anti-spare methods combining Bayesian filtering and strong challenge and response[ C ]//Prnc IASTED lnt Conf on Corn Network and lnfor Security. Cambridge:[ s. n. ] ,2003:214-219.
  • 7Drucker H, Vapnik V, Wu D. Support Vector Macilines for Spare Categorization [ J ]. IEEE Transactions on Neural Networks, 1999, ] 0 ( 5 ) : 1048-1054.
  • 8Androutsopoulos I,Koutsias J, Chandrinos K V,et al. An evaluation of Naive Bayesian anti-spare filtering[ C ]//Proc of the Workshop on Machine Leanring in the New Informaton Age , 11th European Conference on Machine Learning (ECML' 00 ). Barcelona, Spain : [ s. n. ] ,2000:9-17.
  • 9M. DeSouza, J. Fitzgerald, C. Kempand G. Truong, A Decision Tree based Spam Filtering Agent[EB] . from http:∥www. cs. mu. oz. au/481/2001- projects/gntr/index. html, 2001.
  • 10N. Littlestone, Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm[J]. Machine Learning, 2(4) :285- 318, 1988[J].

共引文献189

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部