期刊文献+

BM3D算法在低剂量CT图像去噪中的应用 被引量:1

Application of BM3D Algorithm in Denoising Low-dose CT Images
下载PDF
导出
摘要 低剂量CT在减少对人体辐射的同时也会影响图像的质量。针对低剂量CT图像噪声较大的问题,将BM3D算法应用于CT图像的去噪过程。该算法借鉴了非局部块匹配的思想,首先通过块匹配寻找图像相似块,然后将图像相似块堆叠成三维矩阵后进行协同滤波处理,再将处理结果聚合到原图像块从而还原图像。相比传统去噪算法,BM3D算法有较大优势,视觉效果更佳、PSNR值也明显提高。 Low-dose CT not only reduces the radiation to human body,but also affects the image quality.Aiming at the problem of large noise in low-dose CT images,BM3D algorithm is applied to the denoising process of CT images in this paper.Based on the idea of non-local block matching,the algorithm firstly looks for image similarity blocks through block matching,then stacks the image similarity blocks into 3D matrix and performs collaborative filtering processing,and then aggregates the processing results into the original image blocks to restore the image.Compared with the traditional denoising algorithms,BM3D algorithm has great advantages,better visual effect and significantly higher PSNR value.
作者 王志刚 冯云超 WANG Zhi-gang;FENG Yun-chao(Hunan Normal University,Changsha 410081,Hunan)
出处 《电脑与电信》 2020年第11期56-59,79,共5页 Computer & Telecommunication
关键词 低剂量CT图像 图像去噪 BM3D算法 low-dose CT image image denoising BM3D algorithms
  • 相关文献

参考文献6

二级参考文献31

  • 1周文锐,狄红卫,任观就.基于小波变换的图像去噪优化算法[J].计算机工程与设计,2005,26(12):3244-3246. 被引量:8
  • 2熊先越,张汗灵.基于边缘检测的空间自适应小波去噪[J].计算机工程与应用,2006,42(7):59-61. 被引量:3
  • 3袁文成,杨德兴,陈超.图像混合噪声的一种组合滤波消除方法[J].微处理机,2007,28(4):78-80. 被引量:8
  • 4Yazdi M, Beaulieu L. Artifacts in spiral X-ray CT scanners: problems and solutions [ J ]. Proc World Acad Sci Eng Technol, 2007, 26(3) :376-380.
  • 5Wang J, Lu H, Wen J, et al. Multiscale penalized weighted least-squares sinogram restoration for low-dose X-Ray computed tomography [ J ]. IEEE Transactions on Biomedical Engineering, 2008, 55(3): 1022- 1031.
  • 6Rust G F, Aurich V, Reiser M. Noise/dose reduction and image improvements in screening virtual colonosco- py with tube currents of 20mAs with nonlinear Gaussian filter chains [J ]. Proc SPIE Int Soc Opt Eng, 2002, 4683 : 186 - 197.
  • 7Olshausen B A, Field D J. Emergence of simple-cell re- ceptive field properties by learning a sparse code for natu- ral images [J]. Nature, 1996, 381(6583):607-609.
  • 8Starck J L, Candes E J, Donoho D L. The curvelet transform for image denoising [ J ]. IEEE Transactions on Image Processing, 2002, 11 (6) :670 - 684.
  • 9Wakin M B, Romberg J K, Choi H, et al. Wavelet-do- main approximation and compression of piecewise smooth images [ J ]. IEEE Transactions on Image Pro- cessing, 2006, 15 (5) : 1071 - 1087.
  • 10Needell D, Tropp J A. CoSaMP: iterative signal recov- ery from incomplete and inaccurate samples [ J ]. Ap- plied and Computational Harmon Analysis. 2009, 26 (3) :301 -321.

共引文献57

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部