期刊文献+

关于Boussinesq方程组无粘极限的研究

Research on the Inviscid Limit for Boussinesq Equations
下载PDF
导出
摘要 该文主要研究三维Boussinesq方程组的无粘极限问题.为了克服Boussinesq方程组中温度和速度耦合项产生的困难,带温度的涡量方程需要与Slip边界条件匹配,通过计算得到温度更高阶的边界条件,结合迹定理和能量估计,最后得到了三维粘性Boussinesq方程组初边值问题强解的存在唯一性,并在平坦区域上得到了强解的收敛率. In this paper,we investigate the inviscid limit of the 3D viscous Boussinesq equations with slip boundary condition.We establish the local well-posedness of the strong solutions for initial boundary value problems for such systems.Furthermore,we establish the vanishing viscosity limit process and obtain a strong rate of convergence as the boundary of the domain is flat.In addition,the key observation is that the boundary term asθcan be estimated by the part of high order of energy through the trace formula.
作者 郭连红 Guo Lianhong(Public Course Teaching Department,Guangzhou Panyu Polytechnic,Guangzhou 511483)
出处 《数学物理学报(A辑)》 CSCD 北大核心 2021年第1期91-99,共9页 Acta Mathematica Scientia
基金 广东普通高校重点科研(自然科学)(2019KZDXM042)。
关键词 BOUSSINESQ方程组 Slip边界条件 无粘极限 Boussinesq equations Vanishing viscosity limit Slip boundary conditions
  • 相关文献

参考文献2

二级参考文献12

  • 1Bellout, H. and Neustupa, J., On a u continous family of strong solution to the Euler or Navier-Stokes equations with the Navier type boundary condition, Disc. Cont. Dyn. Sys., 27(4), 2010, 1353-1373.
  • 2Bourguignon, J. P. and Brezis, H., Remarks on the Euler equation, J. Funct. Anal., 15, 1974, 341-363.
  • 3Iftimie, D. and Planas, G., Inviscid limits for the Navier-Stokes equations with Navier friction boundary conditions, Nonlinearity, 19, 2006, 899 -918.
  • 4Iftimie, D. and Sueur, F., Viscosity boundary layers for the Navier-Stokes equations with the Navier slip conditions, Arch. Rational Mech. Anal., to appear. DOI: 10.1007/s00205-010-0320-z.
  • 5Kato, T. and Lai, C. Y., Nonlinear evolution equations and Euler flow, J. Funct. Anal., 56, 1984, 15-28.
  • 6Temam, R., Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd ed., Appl. Math. Sci.~ Vol. 68, Springer-Verlag, New York, 1997.
  • 7Teman, R. and Wang, X. M., Boundary layers associated with incompressible Navier-Stokes equations: the noncharacteristic boundary case, J. Diff. Eqns., 179, 2002, 647- 686.
  • 8da Veiga H. B. and Crispo, F., Sharp inviscid limit results under Navier type boundary conditions, an Lp theory, J. Math. Fluid Mech., 12(3), 2010, 397-411.
  • 9Xiao, Y. L. and Xin, Z. P., On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition, Comm. Pure Appl. Math., LX, 2007, 1027-1055.
  • 10王德利,谭远顺.Asymptotic Stability in the Large of Zero Solution of Second Order Nonlinear Differential Equation[J].Chinese Quarterly Journal of Mathematics,2001,16(2):13-16. 被引量:2

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部