期刊文献+

Bakhvalov-Shishkin网格上求解边界层问题的差分进化算法

Differential Evolution Algorithms for Boundary Layer Problems on Bakhvalov-Shishkin Mesh
下载PDF
导出
摘要 该文在Bakhvalov-Shishkin网格上求解具有左边界层或右边界层的对流扩散方程,并采用差分进化算法对Bakhvalov-Shishkin网格中的参数进行优化,获得了该网格上具有最优精度的数值解.对三个算例进行了数值模拟,数值结果表明:采用差分进化算法求解具有较高的计算精度和收敛性,特别是边界层的数值解精度明显优于选择固定网格参数时的结果. In this paper,the convection-diffusion equation with left boundary layer or right boundary layer is solved on Bakhvalov-Shishkin mesh.The parameter in Bakhvalov-Shishkin mesh is optimized by differential evolution algorithm,and we obtain numerical solution with optimal accuracy on Bakhvalov-Shishkin mesh.Three numerical examples are simulated,and the numerical results show that the differential evolution algorithm is accurate and convergence.Especially,the numerical solution accuracy of the boundary layer is obviously better than that of fixed mesh parameters.
作者 周琴 程立正 Zhou Qin;Cheng Lizheng(School of Information,Mechanical and Electrical Engineering,Hunan International Economics University,Changsha 410205;MOE-LCSM,Hunan Normal University,Changsha 410081)
出处 《数学物理学报(A辑)》 CSCD 北大核心 2021年第1期245-253,共9页 Acta Mathematica Scientia
基金 国家自然科学基金(11771138) 湖南省教育厅资助科研项目(18C1097,19B325) 湖南省普通高校省级一流本科课程建设项目(2019)。
关键词 边界层 Bakhvalov-Shishkin网格 差分进化算法 网格参数 Boundary layer Bakhvalov-Shishkin mesh Differential evolution algorithm Mesh parameter
  • 相关文献

参考文献9

二级参考文献86

  • 1杨继明,陈艳萍.一类奇异摄动对流扩散边值问题的移动网格方法[J].湘潭大学自然科学学报,2004,26(3):24-29. 被引量:12
  • 2Yanping Chen. Uniform convergence analysis of finite difference approximations for singular perturbation problems on an adapted grid[J]. Advances in Computational Mathematics, 2006, 24. 197-212.
  • 3Torsten Linβ, Hans-G· rg Roos. Analysis ol a Finite-difference Scheme for a Singularly Perturbed Problem with Two Small Parameters[J]. J. Math. Anal. Appl., 2004, 289: 355-366.
  • 4Maria Caridad Natividad, Martin stynes. Richardson Extrapolation for a Convection-diffusion Problem Using a Shishkin Mesh[J]. Applied Numerical Mathematics, 2003, 45: 315-329.
  • 5Y. Qiu and D. M. Sloan, Analysis of difference approximations to a singularly perturbed two-point boundary value problem on an adaptively generated grid, J. Comput. Appl. Math., 1999, 101: 1-25.
  • 6Y. Qiu, D. M. Sloan, and T. Tang, Numerical solution of a singularly perturbed two-point boundary value problem using equidistribution: analysis of convergence, J. Comput. Appl. Math., 2000, 116: 121-143.
  • 7H. Z. Tang and T. Tang, Adaptive mesh methods for one-and two-dimensional hyperbolic conser- vation laws, SIAM Y. Numer. Anal., 2003, 41: 487-515.
  • 8W. Huang and R. D. Russell, Moving mesh strategy based upon a gradient flow equation for two-dimensional problems, SIAM J. Sci. Comput., 1999, 20: 998-1017.
  • 9Y. Chen, Uniform convergence analysis of finite difference approximations for singular perturbation problems on an adapted grid, Advances in Computational Mathematics, 2006, 24: 197-212.
  • 10Y. Chen, Uniform pointwise convergence for a singularly perturbed problem using arc-length equidistribution, J. Comput. Appl. Math., 2003, 159: 25-34.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部