摘要
随着多媒体技术的飞速发展,增强图像因视觉效果好而被广泛使用。常规图像增强算法包含直方图均匀化、伽马校正等。然而,近期提出了一种基于对比度增强效果的可逆信息隐藏算法。该算法在往载体中嵌入一定比例秘密信息后,可生成与常规图像增强算法视觉效果一致的含密增强图像。此类增强图像的出现为后续不分辨增强图像来源而直接使用的操作带来了巨大的安全隐患。基于此,提出一种可识别可逆信息隐藏图像的低复杂度增强图像来源检测算法。通过分析可逆信息隐藏图像和多种常规对比度增强图像在直方图分布上的区别,设计了4个高效的特征,然后采用高效的支持向量机分类器完成增强图像的来源检测。实验结果表明,在多种对比度增强图像来源鉴定的场景下,这种算法均可获得较之当前主流方案更准确、更稳定的结果,优势明显。
With the rapid development of multimedia techniques,enhanced images,such as mobile phone pictures,are widely used due to its good visual quality,In general,conventional image enhancement algorithms include histogram equalization,gamma correction,and so on.Recently,a new reversible data hiding algorithm with the content enhancement function(denoted as RDH_CE)is proposed,which could achieve identical visual enhancement quality as conventional enhancement algorithms do when a certain amount of secret data is embedded.It is easy to have some security risk when one enhanced image with some suspicious code embedded in it is utilized.Therefore,an effective algorithm for identifying some suspicious RDH_CE and other regular ones(i.e.,histogram equalization and gamma correction)is proposed in this paper.By analyzing their implementation process,four features are designed and then SVM is employed to identify their source.Experimental results indicate that the proposed scheme can achieve a better performance compared with other state-of-art algorithms in terms of the accuracy and stability.
作者
王俊祥
黄霖
张影
倪江群
林朗
WANG Junxiang;HUANG Lin;ZHANG Ying;NI Jiangqun;LIN Lang(School of Mechanical and Electrical Engineering,Jingdezhen Ceramic Institute,Jingdezhen 333403,China;School of Data Science and Computer science,Sun Yat-sen University,Guangzhou,510006,China;Southeast Digital Economic Development Institute,Quzhou,324000,China)
出处
《西安电子科技大学学报》
EI
CAS
CSCD
北大核心
2021年第1期96-106,共11页
Journal of Xidian University
基金
国家自然科学基金(61762054,62062044,U1736215,61772573)
广州市科技项目(201707010029,201804010265)
衢州市科技项目(2019K12)。
关键词
图像分析
图像识别
机器学习
图像增强
可逆信息隐藏
支持向量机
image analysis
image recognition
machine learning
image enhancement
reversible data hiding
support vector machine(SVM)