期刊文献+

低复杂度的增强图像来源检测算法 被引量:4

Algorithm for the detection of a low complexity contrast enhanced image source
下载PDF
导出
摘要 随着多媒体技术的飞速发展,增强图像因视觉效果好而被广泛使用。常规图像增强算法包含直方图均匀化、伽马校正等。然而,近期提出了一种基于对比度增强效果的可逆信息隐藏算法。该算法在往载体中嵌入一定比例秘密信息后,可生成与常规图像增强算法视觉效果一致的含密增强图像。此类增强图像的出现为后续不分辨增强图像来源而直接使用的操作带来了巨大的安全隐患。基于此,提出一种可识别可逆信息隐藏图像的低复杂度增强图像来源检测算法。通过分析可逆信息隐藏图像和多种常规对比度增强图像在直方图分布上的区别,设计了4个高效的特征,然后采用高效的支持向量机分类器完成增强图像的来源检测。实验结果表明,在多种对比度增强图像来源鉴定的场景下,这种算法均可获得较之当前主流方案更准确、更稳定的结果,优势明显。 With the rapid development of multimedia techniques,enhanced images,such as mobile phone pictures,are widely used due to its good visual quality,In general,conventional image enhancement algorithms include histogram equalization,gamma correction,and so on.Recently,a new reversible data hiding algorithm with the content enhancement function(denoted as RDH_CE)is proposed,which could achieve identical visual enhancement quality as conventional enhancement algorithms do when a certain amount of secret data is embedded.It is easy to have some security risk when one enhanced image with some suspicious code embedded in it is utilized.Therefore,an effective algorithm for identifying some suspicious RDH_CE and other regular ones(i.e.,histogram equalization and gamma correction)is proposed in this paper.By analyzing their implementation process,four features are designed and then SVM is employed to identify their source.Experimental results indicate that the proposed scheme can achieve a better performance compared with other state-of-art algorithms in terms of the accuracy and stability.
作者 王俊祥 黄霖 张影 倪江群 林朗 WANG Junxiang;HUANG Lin;ZHANG Ying;NI Jiangqun;LIN Lang(School of Mechanical and Electrical Engineering,Jingdezhen Ceramic Institute,Jingdezhen 333403,China;School of Data Science and Computer science,Sun Yat-sen University,Guangzhou,510006,China;Southeast Digital Economic Development Institute,Quzhou,324000,China)
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2021年第1期96-106,共11页 Journal of Xidian University
基金 国家自然科学基金(61762054,62062044,U1736215,61772573) 广州市科技项目(201707010029,201804010265) 衢州市科技项目(2019K12)。
关键词 图像分析 图像识别 机器学习 图像增强 可逆信息隐藏 支持向量机 image analysis image recognition machine learning image enhancement reversible data hiding support vector machine(SVM)
  • 相关文献

参考文献2

二级参考文献16

  • 1Funt B, Ciurea F, McCann J. Retinex in Matlab[J]. Journal of Electronic Imaging, 2004,13(1): 48-57.
  • 2Jobson D J, Rahman Z U, Woodell G A. Properties and Performance of a Center/Surround Retinex[J]. IEEE Transactions on Image Processing, 1997, 6(3): 451-462.
  • 3Banic N, Loncaric S. Light Random Sprays Retinex: Exploiting the Noisy Illumination Estimation[J]. IEEE Signal Processing Letters, 2013, 20(12): 1240-1243.
  • 4He Kaiming, Sun Jian, Tang Xiaoou. Single Image Haze Removal Using Dark Channel Prior[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 1956-1963.
  • 5Tarel J P, Hautibre N. Fast Visibility Restoration from a Single Color or Gray Level Image[C]//Proceedings of the 12th IEEE Intemational Conference on Computer Vision. Piscataway: IEEE, 2009: 2201-2208.
  • 6Tarel J P, Hautibre N, Caraffa L, et al. Vision Enhancement in Homogeneous and Heterogeneous Fog[J]. IEEE Intelligent Transportation Systems Magazine, 2012, 4(2): 6-20.
  • 7Cheng F C, Lin C H, Lin J L. Constant Time O(1) Image Fog Removal Using Lowest Level Channel[J]. Electronics Letters, 2012, 48(22): 1404-1406.
  • 8He Kaiming, Sun Jian, Tang Xiaoou. Guided Image Filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397-1409.
  • 9Meylan L, Sosstrunk S. High Dynamic Range Image Rendering with a Retinex-based Adaptive Filter[J]. IEEE Transactions on Image Processing, 2006,15(9): 2820-2830.
  • 10Kim K, Bae J, Jaeseok K. Natural HDR Image Tone Mapping Based on Retinex[J]. IEEE Transactions on Consumer Electronics, 2011, 57(4): 1807-1814.

共引文献7

同被引文献39

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部