期刊文献+

基于社会立场建模的网络犯罪预警研究 被引量:3

Early warning of cyber-crime based on social viewpoint modeling
下载PDF
导出
摘要 网络空间已成为安全防控“第二战场”,如何在新型战场中为网络犯罪预警提供技术支持已成为当前安全工作的重要需求。在分析涉犯罪网络文本特征的基础上,提出基于社会立场的建模方法。首先,基于领域专家破案经验,抽取知识构建顶层本体,并按照警种扩展顶层本体构建领域本体;然后,依据警种所关注主题,定向采集官方媒体言论,构建社会立场库;最后,监测社交媒体言论,依据本体实例推理获取相关主题社会立场,通过计算言论与主题社会立场的相悖度做出预警。从基于情感和基于立场的5组网络犯罪预警实验结果可以看出,网络犯罪相关文本是非情感敏感性的,而基于社会立场的建模方法可有效预警网络犯罪。 Cyberspace has turned into the"second battlefield"for security prevention and control.How to provide technical support for crime early warning in the new battlefield has become one of most important part of security work.A modeling method based on social viewpoint is proposed by analyzing text features of cyber-crime.Firstly,the top-level ontology of cyber-crime is constructed by extracting knowledge from the experiences of domain experts in solving cases,and domain ontologies extending top-level ontology are constructed according to policy categories.Secondly,with theme crawlers,opinions classified by subjects focused by police from official websites are collected,and correlative social viewpoints are built.Finally,by ontology instance reasoning,each speech from social media is matched to corresponding social viewpoint,and by similarity calculation a judgment of early warning is predicted.By analyzing five sets of results from emotion-based and viewpoint-based cyber-crime early warning experiments,it turns out that the text of cyber-crime is non-emotional sensitivity,however,the viewpoint-based modeling method can predict the truly cyber-crimes effectively.
作者 魏墨济 赵燕清 朱世伟 李晨 WEI Mo-ji;ZHAO Yan-qing;ZHU Shi-wei;LI Chen(Information Research Institute,Qilu University of Technology(Shandong Academic of Sciences),Jinan 250014,China)
出处 《计算机工程与科学》 CSCD 北大核心 2021年第1期151-160,共10页 Computer Engineering & Science
基金 山东省重点研发计划(2016GGX101018,2019RZC01007)。
关键词 网络犯罪 预警 社会立场 本体 cyber-crime early warning social viewpoint ontology
  • 相关文献

参考文献7

二级参考文献60

共引文献81

同被引文献37

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部