期刊文献+

融合社会关系的社交网络情感分析综述 被引量:2

Survey of social network sentiment analysis integrating social relationships
下载PDF
导出
摘要 随着以用户为中心的Web 2.0的发展,社交网络平台以惊人的影响力渗入到生活的方方面面,对社交网络中的内容进行情感分析已经成为热点研究课题。Twitter、新浪微博等在线社交网站吸引了大量用户,通过用户间的交互,产生了许多包含用户间社会关系的信息,并且这些社会关系被广泛应用于社交网络的情感分析。融合社会关系的社交网络情感分析将用户间交互形成的社会关系应用到对用户发表在社交网络上内容的情感分析中,拟解决文本短小精炼、语义模糊、特征较为稀疏带来的情感分析准确率低的问题。对融合社会关系的社交网络情感分析研究进展进行综述,梳理、分析主要的方法,列举出其中的关键问题,最后阐述了研究趋势和展望,并进行了总结。 With the development of user-centric Web 2.0,social network platforms have infiltrated all aspects of life with amazing impact,and the sentiment analysis of the content in social network has become a popular research topic.Online social network sites such as Twitter and Sina Weibo have attracted a large number of users.Through user interaction,a lot of information including social relationships among users has been generated.Social relationships are widely used in the fields of personalized recommendations and sentiment analysis in social network.Social network sentiment analysis integrating social relationships is to apply the social relationships formed by user interactions to the sentiment analysis of users’content posted on the social network.It is intended to solve the problems of low accuracy of sentiment analysis caused by short and refined text,fuzzy semantics and sparse features.We review the research progress of the social network sentiment analysis integrating social relationships,sort out and analyze the main methods,list the key issues,elaborate the research trends and prospect,and finally summarize them.
作者 张琦 张祖凡 甘臣权 ZHANG Qi;ZHANG Zu-fan;GAN Chen-quan(School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处 《计算机工程与科学》 CSCD 北大核心 2021年第1期180-190,共11页 Computer Engineering & Science
基金 国家自然科学基金(61702066) 重庆市教委科学技术重点研究项目(KJZD-M201900601) 重庆市自然科学基金(cstc2019jcyj-msxmX0681)。
关键词 社会关系 社交网络 情感分析 social relationship social network sentiment analysis
  • 相关文献

参考文献11

二级参考文献44

  • 1张珊,于留宝,胡长军.基于表情图片与情感词的中文微博情感分析[J].计算机科学,2012,39(S3):146-148. 被引量:55
  • 2Davidiv D, Tsur O,Rappoport A. Enhanced Sentiment Learn-ing Using Twitter Hash-Tags and Smileys[C]//Proc of COLING' 10,2010241 249.
  • 3Barbosa L, Feng J. Robust Sentiment Detection on Twitter from Biased and Noisy Data[C] //Proc of COLING' 10, 2010 : 36-44.
  • 4J iang L, Y u M, Zhou M, et al. Target-Dependent Twitter Sen- timent Classification[C]//Proc of the 49th Annual Meeting of the Applicational Linguistics,2011:151-160.
  • 5Tan L K-W,Na J C,Chang K Y. Sentence-Level Sentiment Po- larity Classification Using a Linguistic Approach[C]//Proc of ICADL'll,2011:77-87.
  • 6Pak A,Paroubek P. Twitter as a Corpus for Sentiment Anal- ysis and Opinion Mining[C]//Proc of LREC ' 10,2010 : 1320 1327.
  • 7Xin M J,Wu H X. A Public Opinion Classification Algorithm Based on Micro-Blog Text Sentiment Intensity Design and Implementation[C]//Proe of MECS ' I 1,2011:48-54.
  • 8Agarwal A, Xie B, Vovsha I, et al. Sentiment Analysis of Twitter Data[C]//Proe of Association for Computational Linguistics, 2009 :30-38.
  • 9徐琳宏,林鸿飞,潘宇,任惠,陈建美.情感词汇本体的构造[J].情报学报,2008,27(2):180-185. 被引量:394
  • 10柳位平,朱艳辉,栗春亮,向华政,文志强.中文基础情感词词典构建方法研究[J].计算机应用,2009,29(10):2875-2877. 被引量:86

共引文献107

同被引文献21

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部