摘要
基于软件定义智能层次化模型设计了一种睡眠动作识别系统,该系统可通过规则推理来应对智能环境中的各种变化因素.设计了一种时间队列实时提取动作特征来训练模型,提出了一种规则提取算法从该模型中提取系统所需规则.该系统基于这些规则可识别9种睡眠动作,每种动作的识别精确率均可达到96%以上,总识别准确率达到98.9%,且比其它系统适应性更强.实验结果表明,该系统通过更新规则可快速应对节点位置、节点数量和用户需求的变化.
Based on the hierarchical model of SDI(Software-Defined Intelligence),a system for action recognition during sleep is designed to deal with various changing factors in smart environment through rule-based reasoning.A time queue is designed to extract the characteristics of actions in real-time to train the model,and a rule extraction algorithm is proposed to extract the rules required by the system from the model.Depending on these rules,the proposed system can recognize nine types of sleep actions:the recognition precision of each type can exceed 96%;the total recognition accuracy can reach 98.9%.Importantly,it has more robust adaptability than other systems.Experimental results show that the system can update rules for quickly adapting to changes in node position,the number of nodes,and user requirements.
作者
汪成亮
郑诚
曾卓
WANG Cheng-liang;ZHENG Cheng;ZENG Zhuo(College of Computer Science and Technology,Chongqing University,Chongqing 400044,China)
出处
《电子学报》
EI
CAS
CSCD
北大核心
2021年第1期85-89,共5页
Acta Electronica Sinica
基金
国家自然科学基金(No.61672115)
重庆市研究生科研创新专项(No.CYS19049)。
关键词
智能环境
软件定义智能
睡眠动作识别
规则推理
smart environment
software-defined intelligence
sleep action recognition
rule-based reasoning