期刊文献+

表面微观缺陷检测方法及其应用研究 被引量:2

Research on surface micro-defect detection method and application
下载PDF
导出
摘要 基于多技术融合的表面微观缺陷检测方法结合最新的物体成像、云计算、人工智能和5G等前沿技术,建立微观缺陷检测系统,对微观领域的缺陷进行精确检测,具有识别速度快、准确率高、成本低、可追溯性强、数据分析、智能反控等优点,克服了传统检测手段的弊端,且在典型工业场景中得到了较好的应用。 Surface micro-defect detection has a pivotal position in the industrial field.At present,a large number of manual or traditional machine vision methods are still used for surface micro-defect inspection,which leads to unstable defect detection accuracy on the sub-micron level,which are difficult to be fully promoted in the industrial field.The surface micro-defect detection method based on multi-technology fusion combines the latest object imaging technologies,cloud computing,AI and 5G and other cutting-edge technologies to establish a micro defect detection system to accurately detect defects in the micro field with fast recognition speed and high accuracy,low cost,strong traceability,data analysis,intelligent counter-control,etc.,which overcomes the shortcomings of traditional detection methods,such as single-point detection,low accuracy,high cost,lagging response,poor analysis,and weak system.Finally,the application of this technology in typical industrial scenarios is discussed.
作者 陈虎 王成 卢仁谦 CHEN Hu;WANG Cheng;LU Renqian(Chongqing Humi Network Technology Co.,Ltd.,Chongqing 400000,China;Xidian University,Xi'an 710071,China)
出处 《信息通信技术与政策》 2021年第1期20-26,共7页 Information and Communications Technology and Policy
关键词 工业互联网 视觉检测 表面微观缺陷 工业人工智能 Industrial Internet visual inspection surface micro-defects artificial intelligence
  • 相关文献

参考文献2

二级参考文献85

  • 1高西奇,尤肖虎,江彬,潘志文.面向后三代移动通信的MIMO-GMC无线传输技术[J].电子学报,2004,32(F12):105-108. 被引量:10
  • 2[2]Rautaruukki New Technology. Defect Classification in Surface Inspection of Strip Steel. Steel Times, 1992(5): 214~216
  • 3[3]Badger J C, Enright Sean T. Automated surface inspection system. Iron and Steel Engineer, 1996 (3): 48~51
  • 4[4]Parsytech Computer GmbH. Software controlled on-line surface inspection. Steel Times International, 1998(3): 30~35
  • 5[5]Karayiannis N B. Accelerating the training of feed forward Neural Networks using generalized hebbian rules for inintializing the internal representation. IEEE Transactions on Neural Networks, 1996, (7)2: 419~426
  • 6[6]Sking J, Jorg R. Self-learning fuzzy controllers based on temporal back propagation. IEEE Trans. on Neural Networks, 1992, 3(5): 714~723
  • 7[7]Amari S, Murata N, Muller K R, et al. Asymptotic statistical theory of overtraining and cross-validation. In: Anon. ed. METR 95-06. Tokyo: Dept. of Mathematical Engineering and Information, Physics, Univ. of Tokyo, 1995.
  • 8METIS. Mobile and wireless communications enablers for the 2020 information society. In: EU 7th Framework Programme Project, https://www.metis2020.com.
  • 9Wen T, Zhu P Y. 5G: A technology vision. Huawei, 2013. http://www.huawei.com/en/about-huawei/publications/ winwin-magazine/hw-329304.htm.
  • 10Wang C X, Haider F, Gao X Q, et al. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun Mag, 2014, 52: 122-130.

共引文献768

同被引文献13

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部