期刊文献+

一种基于黏性隐马尔可夫模型的多频带频谱感知方法

A multi-band spectrum sensing method based on sticky hidden Markov model
下载PDF
导出
摘要 现有多频带频谱感知方法经常利用宽带频谱的稀疏性来实现检测,当频谱占用率较高时具有较差的性能。针对这一问题,提出了一种基于相邻频带状态的多频带频谱感知方法。首先,通过引入黏性因子,建立了多频带状态和观测值的黏性隐马尔可夫模型。接着,详细分析了黏性隐马尔可夫模型中参数的迭代更新方式。最后,通过估计各频段观测值的后验均值实现了多频带频谱感知。仿真结果表明,不管宽带频谱是否具有稀疏性,所提方法的检测性能都优于传统方法,且在虚警概率为0.1、频带平均占用率为50%、平均信噪比为−12 dB时能达到接近0.99的检测概率,比其他方法的检测概率提升了约30%。另外,所提方法的收敛速度快于已有方法,因此具有更低的计算复杂度。 Existing multi-band spectrum sensing methods often use the sparsity of broadband spectrum.However,high spectrum occupancy rate of primary users degrades their performance severely.To address this issue,a novel multi-band spectrum sensing method was proposed by exploiting the state correlation among adjacent frequency bands.Firstly,a sticky hidden Markov model(SHMM)was established by regarding the multi-band states and measured energies as hidden and observed variables.In the SHMM,a sticky factor was introduced to represent the state correlation among adjacent frequency bands.Secondly,iterative expressions for the parameters of SHMM were derived.Finally,multi-band spectrum sensing was implemented by obtaining the posterior mean of observations from every frequency bands.Simulation results show that the proposed method outperforms existing methods,and when the false alarm probability is 0.1,the average frequency band occupancy rate is 50%,and the average signal-to-noise ratio is-12 dB,the detection probability can reach close to 0.99,which is about 30%higher than the detection probability of other methods.In addition,the proposed method had a faster convergence rate than existing methods and therefore has lower computational complexity.
作者 贾忠杰 金明 宋晓群 JIA Zhongjie;JIN Ming;SONG Xiaoqun(Faculty of Electrical Engineering and Computer Science,Ningbo University,Ningbo 315211,China)
出处 《电信科学》 2021年第1期48-57,共10页 Telecommunications Science
基金 国家自然科学基金资助项目(No.61871246) 浙江省自然科学基金资助项目(No.LY18F010008)。
关键词 认知无线电 多频带频谱感知 黏性隐马尔可夫模型 cognitive radio multi-band spectrum sensing sticky hidden Markov model
  • 相关文献

参考文献1

二级参考文献11

  • 1Spectrum Effiency Working Group.Federal communica- tions commission spectrum policy task force[R].2002 (2) : 135.
  • 2Joseph M Ill,Gerald Q M J R.Cognitive Radio:Making software radio more personal[J].IEEE Personal Commu- nication, 1999,6 (4) : 13-18.
  • 3Quan Z, Cui S, Sayed A H.Optimal linear cooperation for spectrum sensing in cognitive radio networks[J].IEEE J Select Topics Signal Processing,2008,21:28-40.
  • 4Zhang Wei, Letaief K B.Optimization of cooperative spectrum sensing with energy detection in cognitive radio nerworks[J].IEEE Trans on Wireless Commun,2009, 8(12) : 5761-5766.
  • 5Unnikrishnan J, Veeravaloli V V.Cooperative sensing for primary detection in cognitive radio[J].IEEE J Select Topics Signal Processing, 2008,2 ( 1 ) : 18-27.
  • 6Liang Y C, Zeng Y, Peh E, et al.Sensing-throughput tradeoff for cognitive radio networks[J].IEEE Trans on Wireless Commun,2008,7(4) : 1326-1337.
  • 7Quan Z, Cui S, Sayed A H, et al.Optimal multiband joint detection for spectrum sensing in cognitive radio net- works[J].IEEE Trans on Signal Process, 2009, 57(3): 1128-1140.
  • 8Hoseini P P, Beaulieu N C.Optimal wideband spectrum sensing framework for cognitive radio systems[J].IEEE Trans on Signal Process,2011,59(3).
  • 9Hoseini P P, Beaulieu N C.Sequential multichannel joint detection framework with non-uniform channel sensing durations for cognitive radio networks[C]//Proceedings of the IEEE ICC 2011,2011.
  • 10Lee W Y,Akyildiz I F.Optimal spectrum sensing frame- work for cognitive radio networks[J].IEEE Trans on Wireless Communications, 2008,7 (10).

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部