期刊文献+

一类反应扩散方程的爆破时间下界估计 被引量:5

Lower Bounds of the Blow⁃Up Time for a Class of Reaction Diffusion Equations
下载PDF
导出
摘要 该文讨论了一类反应项为非线性非局部热源且热汇具有时间系数的反应扩散方程,分别在Dirichlet、Neu⁃mann或Robin边界条件下,在有界区域中的爆破行为.若解可能在有限时间发生爆破,通过构造合适的辅助函数,对时间系数给出适当的条件,利用Sobolev、Hölder不等式及Payne和Schaefer积分不等式等技巧,得出了解的爆破时间下界的估计. The blow⁃up behaviors in a bounded domain were considered for a class of reaction diffusion equations with nonlinear nonlocal heat sources and time⁃dependent⁃coefficient heat sink,under the Dirichlet,the Neumann and the Robin boundary conditions respectively.Through construction of auxiliary functions and appropriate conditions for the time⁃dependent coefficients,with the Sobolev inequality,the Hölder inequality and the Payne and Schaefer integral inequality etc.,the lower bounds of the blow⁃up time of solutions were given for the blow⁃up occurring in a finite time.
作者 许然 田娅 秦瑶 XU Ran;TIAN Ya;QIN Yao(School of Science,Chongqing University of Posts and Telecommunications,Chongqing 400065,P.R.China)
出处 《应用数学和力学》 CSCD 北大核心 2021年第1期113-122,共10页 Applied Mathematics and Mechanics
关键词 非局部问题 时间系数 爆破时间下界 nonlocal problem time⁃dependent coefficient lower bound of the blow⁃up time
  • 相关文献

参考文献4

二级参考文献24

  • 1穆春来,胡学刚,李玉环,崔泽键.BLOW-UP AND GLOBAL EXISTENCE FOR A COUPLED SYSTEM OF DEGENERATE PARABOLIC EQUATIONS IN A BOUNDED DOMAIN[J].Acta Mathematica Scientia,2007,27(1):92-106. 被引量:7
  • 2Friedman A,Mcleod B. Blow-up of positive solutions of semilinear heat equations[ J]. Indiana Univ Math J, 1985,34(2) :425-447.
  • 3Furter J, Grinfeld M. Local vs non-local interactions in population dynamics[ J]. J Math Biology, 1989,27( 1 ) : 65-80.
  • 4LU Hui-hua, WANG Ming-xin. Global solutions and blow-up problems for a nonlinear degenerate parabolic system coupled via nonlocal sources[ J]. J Math Anal Appl, 2007, 333(2):984-1007.
  • 5ZHENG Si-ning, WANG Li-dong. Blow-up rate and profile for a degenerate parabolic system coupled via nonlocal sources[ J]. Comput Math Appl, 2006,52( 10/11 ) : 1387-1402.
  • 6DENG Wei-bin, LI Yu-xiang, XIE Cun-hong. Blow-up and global existence for a nonlocal degenerate parabolic system[ J]. J Math Anal Appl,2003,277( 1 ) : 199-217.
  • 7DUAN Zhi-wen, DENG Wei-bin, XIE Chun-hong. Uniform blow-up profile for a degenerate parabolic system with nonlocal source[ J]. Computers and Mathematics With Applications, 2004,47 (6/7): 977-995.
  • 8LIU Qi-lin, LI Yu-xiang, GAO Hong-jun. Uniform blow-up rate for a nonlocal degenerate parabolic equations[ J]. Nonlinear Analysis ,2007,66(4) :881-889.
  • 9Souplet P. Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal nonlinear source[ J]. J Differential Equations, 1999, 153(2 ) :374-406.
  • 10DU Li-li. Blow-up for a degenerate reaction-diffusion system with nonlinear localized sources[ J]. J Math Anal Appl, 2006,324( 1 ) : 304-320.

共引文献28

同被引文献20

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部