期刊文献+

广义对称表的矩阵象和点估计

Matrix Image and Point Estimates of Generalized Symmetrical Arrays
下载PDF
导出
摘要 基于《多边矩阵理论》,由东方整体性思维所启迪,试图提供并完善一套从整体到局部处理复杂系统对称多指标问题、对称非均匀性问题、对称非线性问题的强有力的数学工具,并对其进行严格的理论推导和证明。广义对称性或广义对称分析方法,是许多学科关注的问题之一,在研究广义对称性问题时,构造广义对称表和正交幂等系统成为了研究广义对称性问题的基础。利用自由函数模型,根据正交幂等系统,采取对称置换不变性作为平衡指标,定义广义对称表的矩阵象,并给出对称分解项及其方差和贡献率的点估计。 This series of articles based on“multilateral matrix theory”,inspired by the Eastern holistic thinking by trying to provide and improve a whole complex system to handle symmetrical multi-target problems,symmetrical non-uniformity problems,symmetrical nonlinear problems,a powerful mathematical tool from Global to Local issues and its rigorous theoretical analysis and proof.Generalized symmetry or generalized symmetry analysis method is one of the concerns in the study of generalized symmetry problems,the structure for both generalized symmetrical arrays and orthogonal idempotent systems is the basis of generalized symmetry problems.As the second series of papers,in this paper,using the free function model,according to the orthogonal idempotent system,adopting the symmetrical permutation invariability as a balance index,both the matrix image definition of generalized symmetrical arrays and the point estimates of symmetrical decomposition items are discussed.
作者 白金峰 张应山 赵建立 BAI Jinfeng;ZHANG Yingshan;ZHAO Jianli(Faculty of Business,City University of Macao,Macao 999078,China;School of Statistics,Faculty of Economics and Management,East China Normal University,Shanghai 200241,China;School of Mathematical Sciences,Liaocheng University,Liaocheng 252059,China)
出处 《聊城大学学报(自然科学版)》 2021年第1期1-10,共10页 Journal of Liaocheng University:Natural Science Edition
基金 国家自然科学基金项目(11301247) 教育部高等学校博士学科点专项基金项目(200802691021)资助。
关键词 广义对称表 正交幂等系统 自由函数模型 对称置换不变性 对称矩阵象 generalized symmetrical arrays orthogonal idempotent systems free function models the symmetrical displacement invariability symmetrical matrix images
  • 相关文献

参考文献15

二级参考文献89

  • 1CHU YuMing 1, XIA WeiFeng 1 & ZHAO TieHong 2 1 Department of Mathematics, Huzhou Teachers College, Huzhou 313000, China,2 Institut de Mathmatiques, Universit Pierre et Marie Curie, Paris F-75252, France.Schur convexity for a class of symmetric functions[J].Science China Mathematics,2010,53(2):465-474. 被引量:6
  • 2杨运峰,张应山.k阶k个线性无关方阵同时相似对角化的存在性条件[J].河南广播电视大学学报,1996,11(Z1):34-35. 被引量:1
  • 3张应山,茆诗松,詹从赞,郑忠国.具有两种因果关系逻辑分析模型的稳定性结构[J].应用概率统计,2005,21(4):366-374. 被引量:12
  • 4唐有棋.对称性原理[M].科学出版社,1977.
  • 5王伯英.多重线性代数[M].北京师范大学出版社,1985.
  • 6Zhang Y S, Pang S Q, Jiao Z M, Zhao W Z. Group partition and systems of orthogonal idempotents[J]. Linear Algebra and Its Applications, 1998,278 : 249-262.
  • 7SOBOL I M, TARANTOLA S, GATELLI D, et al. Estimating the approximation error when fixing unessential facters in global sensitivity analysis[J]. Reliability Engineering and System Safety, 2007, 92:957-960.
  • 8SOBOL I M. Theorems and examples on high dimensional model representation[J]. Reliability Engineering and System Safety, 2003, 79: 187-193.
  • 9SOBOL I M, LEVITAN Yu L. On the use of variance reducing multipliers in Monte-Carlo computations of a global sensitivity index[J]. Computer Physics Communications, 1999, 117: 52-61.
  • 10SOBOL I M. Global sensitivity indices for nonlinear mathematical models and their Monte-Carlo estimates[J]. Mathematics and Computers in Simulation~ 2001, 55: 271-280.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部