摘要
故障的智能诊断技术在机械、电力等领域得到了很好的研究,但核辐射探测器模拟电路的故障智能诊断研究工作仍欠缺。本课题选用了一种辐射能谱仪的模拟电路,除了正常状态外,设置了26种1~3个器件参数偏移30%的多种混合故障,应用支持向量机(SVM)直接对电路输出的波形信号进行识别分类。测试结果表明,故障诊断与定位的准确度较为满意,故障漏报率为0.2%;故障器件定位准确,定位准确度最低为76%。应用SVM直接对输出波形进行识别分类是一种值得继续研究和尝试投人应用故障智能诊断与定位的方法。
The intelligent fault diagnosis technology has been well studied in the fields of machinery and electric pow er,but the research on the intelligent fault diagnosis of the analog circuit of nuclear radiation detector is still lacking.In this project,an analog circuit of a radiation spectrometer is selected.In addition to the normal sta te,a variety of mixed faults with parameter deviation of 30%of 26 kinds of 1〜3 devices are set up.Support vector machine(SVM)is used to identify and classify the waveform signals output by the circuit directly.The test results show that the fault diagnosis and location accuracy is satisfactory and the fault failure rate is 0.2%.The location of the fault device is accurate,with the minimum accuracy of 76%.It is worth to continue researching and trying to apply fault intelligent diagnosis and location method to recognize and classify output waveform by SVM.
作者
胡创业
张振华
刘东昆
范欣阳
朱家俊
HU Chuang ye;ZHANG Zhen-hua;LIU Dong-kun;FAN Xin-yang;ZHU Jia-jun(College of Nuclear Science Technology,University of South China,Hengyang 421001,China;College of Nuclear Science and Technology,Beiing Normal University,Beiing 100875,China;Xi'an Nuclear Instrument Factory,Xi'an 710061,China)
出处
《核电子学与探测技术》
CAS
北大核心
2020年第3期417-421,共5页
Nuclear Electronics & Detection Technology
基金
国家自然科学基金项目(11575081)
湖南省自然科学基金项目(2018JJ2317)。
关键词
故障诊断
故障定位
支持向量机
核辐射探测器
模拟电路
fault diagnosis
fault location
support vector machine
nuclear radiation detector
analog circuit