期刊文献+

基于关联规则挖掘的路面损坏状况影响因素分析 被引量:6

Influencing Factors Analysis of Pavement Damage Based on Mining Association Rules
下载PDF
导出
摘要 本文基于路面评价指标中车辙深度指数和行驶质量指数来评价路面的损坏情况,使用关联规则挖掘环境、交通、路面等影响因素与路面状况之间的关联程度.针对关联规则Apriori算法复杂度和耗时的缺点,提出一种不生成候选集的方法来产生频繁集的改进Apriori算法,并通过实验对比证明改进的Apriori算法能够有效提升速度和性能.使用改进的Apriori算法分析路面评价指标及其影响因素之间的强关联规则,得到不同环境路面损坏的主要成因.本文结论能够对路面养护提供科学可靠的支持,可为路面养护部门提供合理的养护建议与数据支撑. Based on the rutting depth index and driving quality index in the pavement evaluation index,the pavement damage was evaluated in this study.The association rules were used to mine the degree of association between influencing factors such as environment,traffic,and road surface and road surface conditions.Aiming at the shortcomings of the complexity and time-consuming of the association rule Apriori algorithm,an improved Apriori algorithm that does not generate candidate sets to generate frequent sets was proposed.The experiments show that the improved Apriori algorithm can effectively improve the speed and performance.The improved Apriori algorithm was used to analyze the strong association rules between evaluation indexes and influencing factors,and the main causes of pavement damage in different environments were obtained.The conclusion of this paper can provide scientific and reliable support for the pavement maintenance,reasonable maintenance suggestions,and data support for the pavement maintenance department.
作者 曹磊 徐磊 杨菲 贾彭斐 CAO Lei;XU Lei;YANG Fei;JIA Peng-Fei(School of Information Engineering,Chang’an University,Xi’an 710064,China)
出处 《计算机系统应用》 2021年第1期186-193,共8页 Computer Systems & Applications
基金 陕西省交通运输厅2018年度交通科研项目(18-31X) 长安大学中央高校基本科研业务费专项资金(300102249102)。
关键词 数据挖掘 关联规则 改进Apriori算法 路面损坏分析 data mining association rules improved Apriori algorithm pavement damage analysis
  • 相关文献

参考文献7

二级参考文献44

  • 1朱祥玉,侯德文,陈希.对关联规则挖掘Apriori算法的进一步改进[J].信息技术与信息化,2005(6):81-83. 被引量:7
  • 2曾锋,李宁,杭燕.基于规则的边缘连接算法在路面病害检测中的应用[J].计算机应用与软件,2006,23(2):30-31. 被引量:4
  • 3SOIBELMAN L,KIM H. Data Preparation Process for Construction Knowledge Generation Through Knowledge Discovery in Databases[J]. Computing In Civil Engineering, 2002,16 (1): 39-48.
  • 4PANDE A, ABDEL-ATY M. Application of Data Mining Techniques for Real-time Crash Risk Assessment on Freeways [C]//ASCE. Applications of Advanced Technologies in Transportation. Chicago: ASCE, 2006 : 250-256.
  • 5DAVID H. Simple and Effective Static Analysis to Find Bugs by Hovemeyer[D]. College Park: University of Maryland, 2005.
  • 6巴斯蒂安M.数据仓库与数据挖掘技术[M].武森,高学东,译.北京:冶金工业出版社,2003.
  • 7王选仓,李志强,张绍阳,等.郑石高速公路建养一体化技术报告[R].西安:长安大学,2008.
  • 8TAN P N,STEINBACH M,KUMAR V.数据挖掘导论[M].范明,范宏建,译.北京:人民邮电出版社,2006.
  • 9文拯.关联规则算法的研究[M].中南大学,2009.
  • 10刘寒冰.数据挖掘中的关联规则算法研究[M].河北工程大学,2007.

共引文献32

同被引文献60

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部