摘要
以往使用的理论决策法和模式识别法因受到噪声影响,导致识别精准度较低,基于此提出了基于机器学习的5G通信目标信号识别方法研究。基于机器学习信号识别原理,分析并模态分解5G通信目标信号,剔除噪声干扰信号后提取特征,通过计算通信信号相似度判断信号传输路径,以此设计目标信号识别流程。由实验验证结果可知,该方法识别精准度最高为0.98,具有良好的识别效果。
In the past,the oretical decision-making methods and pattern recognition methods were affected by noise,resulting in low recognition accuracy.Based on this,a research on 5G communication target signal recognition methods based on machine learning was proposed.Based on the principle of machine learning signal recognition,the 5G communication target signal is analyzed,the 5G communication target signal is modally decomposed,and the characteristics are extracted after removing the noise interference signal.Calculate the similarity of the communication signal,determine the signal transmission path,and design the target signal identification process.The experimental verification results show that this method has a maximum recognition accuracy of 0.98,which has a good recognition effect.
作者
王天顺
付丽方
WANG Tianshun;FU Lifang(College of Information Engineering,Zhengzhou Shengda Economic and Trade Management College,Zhengzhou 451191,China)
出处
《通信电源技术》
2020年第20期68-69,72,共3页
Telecom Power Technology
基金
2019年度郑州市教育局教育改革课题“服务区域经济发展的应用型人才培养模式研究与实践_以计算机专业为例”(ZZJG-B9034)。
关键词
机器学习
5G通信
目标信号
machine learning
5G communication
target signal