期刊文献+

超宽带雷达人体姿态识别综述 被引量:6

Overview of Human Posture Recognition by Ultra-wideband Radar
下载PDF
导出
摘要 与传统摄像头相比,利用超宽带雷达进行人体姿态识别不仅对环境要求低、识别率高且能较好地解决摄像头存在视角盲区和易泄露隐私等问题。结合超宽带雷达系统的特性,对常见的超宽带脉冲信号进行了分析;针对当前的研究前沿,对超宽带雷达人体姿态识别的传统机器学习方法和深度学习方法进行分析,结合具体文献对具有代表性的支持向量机(SVM)和卷积神经网络(CNN)进行原理分析和模型的局限性进行了分析;提出超宽带雷达人体姿态识别的通用模型,分析了超宽带雷达人体姿态识别亟需解决的问题并对其未来发展方向进行了展望。 Compared with the traditional camera,the use of Ultra-Wideband(UWB)radar for human posture recognition is not only low environmental requirements,high recognition rate and can better solve the problems of blind spots and easy to leak privacy in the camera.Combined with the characteristics of the UWB radar system,the common ultrawideband pulse signals are analyzed in detail.According to the current research frontier,the traditional machine learning methods and deep learning methods of human posture recognition by UWB radar are analyzed,and the principle and each model’s limitation of the representative Support Vector Machine(SVM)and Convolutional Neural Networks(CNN)are analyzed and discussed in combination with the specific literature.The general model of UWB radar human posture recognition is proposed,the problems that need to be solved urgently in human posture recognition by UWB radar are analyzed and its future development direction is prospected.
作者 李俊侠 张秦 郑桂妹 LI Junxia;ZHANG Qin;ZHENG Guimei(Postgraduate School,Air Force Engineering University,Xi’an 710051,China;Air and Missile Defense College,Air Force Engineering University,Xi’an 710051,China)
出处 《计算机工程与应用》 CSCD 北大核心 2021年第3期14-23,共10页 Computer Engineering and Applications
基金 国家自然科学基金面上项目(61971438) 陕西省青年托举人才项目(20180109) 陕西省自然科学基金面上项目(2019JM-155)。
关键词 超宽带雷达 人体姿态识别 深度学习 支持向量机 卷积神经网络 Ultra-Wideband(UWB)radar human posture recognition deep learning Support Vector Machine(SVM) Convolutional Neural Networks(CNN)
  • 相关文献

参考文献9

二级参考文献51

  • 1庄钊文,刘永祥,黎湘.目标微动特性研究进展[J].电子学报,2007,35(3):520-525. 被引量:128
  • 2MASOUD O, PAPANIKOLOPOULOS N. A method for human action recognition [ J ]. Image and Vision Computing, 2003, 21 (8) : 729-743.
  • 3ADAM A, RIVLIN E, SHIMSHONI I, et al. Robust real-time unusual event detection using multiple fixed- location monitors [ J ]. IEEE Pattern Analysis and Machine Intelligence, 2008, 30(3) : 555-560.
  • 4BENEZETH Y, JODOIN P M, SALIGRAMA V. Abnormality detection using low-level co-occurring events[ J]. Pattern Recognition Letters, 2011, 32 ( 3 ) : 423-431.
  • 5IWASHITA Y, TAKAKI S, MOROOKA K, et al. Abnormal behavior detection using privacy protected videos [ C ]. IEEE Emerging Security Technologies (EST), 2013 : 55-57.
  • 6BOUMA H, BAAN J, BURGHOUTS G J, et al. Automatic detection of suspicious behavior of pickpockets with track-based features in a shopping mall [ C ]. International Society for Optics and Photonics, 2014: 92530F-92530F-9.
  • 7VISHWAKARMA D K, KAPOOR R, MAI-IESHWARI R, et al. Recognition of abnormal human activity using the changes in orientation of silhouette in key frames[C]. IEEE Computing for Sustainable Global Development, 2015: 336-341.
  • 8BENENSON R, MATHIAS M, TUYTELAARS T, et al. Seeking the strongest rigid detector[C]. Computer Vision and Pattern Recognition, 2013: 3666-3673.
  • 9DALAL N, TRIGGS B. Histograms of oriented gradients for human detection [ C ]. IEEE Computer Vision and Pattern Recognition, 2005 : 886-893.
  • 10FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to boosting[ J]. Journal of computer and system sciences, 1997, 55(1) : 119-139.

共引文献146

同被引文献32

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部