期刊文献+

基于LSH的shapelets转换方法 被引量:1

Shapelets Transform Method Based on LSH
下载PDF
导出
摘要 针对基于shapelets转换的时间序列分类算法因shapelets候选集中存在大量相似序列而造成耗时过长的问题,提出了一种基于LSH的shapelets转换方法(Locality Sensitive Hashing Shapelets Transform,LSHST),提出一种局部敏感哈希函数(LSH)的改进算法,对原始子序列候选集进行逐级过滤筛选,快速挑选出形态上具有代表性的shapelets集合,计算集合中shapelets的质量,采用覆盖的方法确定将要进行转换的shapelets,进一步减小shapelets的数量,进行shapelets转换。实验表明,与Shapelet Transform(ST)、ClusterShapelets(CST)和Fast Shapelet Selection(FSS)算法相比,LSHST在分类精度上最高提升了20.05、19.9和16.52个百分点,在时间节省程度上最高达8000倍、16000倍和8.5倍。 Aiming at the problem that the time series classification algorithm based on shapelets conversion is too timeconsuming due to the existence of a large number of similar sequences in the shapelets candidate set,a LSH-based Shapelets Transformation method(Locality Sensitive Hashing Shapelets Transform,LSHST)is proposed.An improved algorithm of Local Sensitive Hash(LSH)function is proposed,and the original subsequence candidate set is filtered step by step.The quality of shapelets in the set is calculated,and the amount of shapelets is reduced by a method of coverage to determine the shapelets to be transformed,and finally shapelets is transformed.The experiments show that,compared with algorithms such as Shapelet Transform(ST),ClusterShapelet(CST),and Fast Shapelet Selection(FSS),LSHST improves the classification accuracy by 20.05,19.95,and 16.52 percentage points,and the highest time savings 8,000 times,16,000 times and 8.5 times.
作者 丁智慧 乔钢柱 程谭 宿荣 DING Zhihui;QIAO Gangzhu;CHENG Tan;SU Rong(School of Data Science and Technology,North University of China,Taiyuan 030051,China)
出处 《计算机工程与应用》 CSCD 北大核心 2021年第3期112-119,共8页 Computer Engineering and Applications
基金 山西省重点研发计划重点项目(201703D111011)。
关键词 时间序列分类 shapelets转换 局部敏感哈希 time series classification shapelets transform Locality Sensitive Hashing(LSH)
  • 相关文献

参考文献2

二级参考文献31

  • 1汤胤.时间序列相似性分析方法研究[J].计算机工程与应用,2006,42(1):68-71. 被引量:17
  • 2杨一鸣,潘嵘,潘嘉林,杨强,李磊.时间序列分类问题的算法比较[J].计算机学报,2007,30(8):1259-1266. 被引量:40
  • 3Ye L, Keogh E. Time series Shapelets: A novel technique thatallows accurate, interpretable and fast classification. DataMining and Knowledge Discovery, 2011,22(1): 149-182.
  • 4Bagnall A, Davis L, Hills J’ Lines J. Transf<xmatkxi based ensnblesfor time series classificatiax The 12th SIAM IntematicxialConference cxi Data Mining. USA. 2012.307-318.
  • 5Pierre G Pattern extraction for time series classification. TheEuropean Conference on Principles and Practice ofKnowledge Discovery in Databases. Freipurg, Germany.2001.115-127.
  • 6Ye L, Keogh E. lime series Shapelets: A new primitive for datamining. The 15th ACM SIGKDD International Conference onKnowledge Discovery and Data Mining. Paris. 2009.947-956.
  • 7Jason L, Anthony B. Alternative quality measures for timeseries Shapelets. Intelligent Data Engineering and AutomatedLearning, 2012,74(35): 475483.
  • 8Abdulah M, Eamonn K, Neal Y. Logical-sh^>elets: An expressivepimitive fix time series classificatoi. The 17th ACMSIGKDD International Cc?iference cxi Knowledge Discoveiy andDala Mining. San Diego, CA. 2011.1154-1162.
  • 9Kiyoung Y,Cyrus S. A PCA-based similarity measure formultivariate time series. The 2nd ACM InternationalWorkshop on Multimedia Databases. Washington, DC,USA. 2004. 65-74.
  • 10Herve A, Lynne JW. Principal component analysis. WileyInterdisciplinary Reviews: Computational Statistics, 2010,2(4):433-459.

共引文献17

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部