期刊文献+

水下图像背景噪声的分类识别新方法 被引量:2

A new method for classification and recognition of background noise in underwater images
下载PDF
导出
摘要 为对水下图像背景噪声进行分类识别,提出一种水下图像背景噪声的分类识别方法。首先,采用Kendall等级相关系数检验方法提取水下图像的均匀区域,剔除包含目标的图像块,建立数据集用于分类器训练和测试;然后,设计了一个轻量级的卷积神经网络,训练参数量比现有的分类网络大为缩小;最后,利用数据集对卷积神经网络进行训练和测试。实验结果表明,所提方法准确率达到98%以上,超过了传统的支持向量机方法。 In order to classify and recognitze the background noise of underwater image, a classification and recognition method of underwater image background noise is presented. Firstly, the homogeneous image regions are extracted based on the Kendall coefficient hypothesis testing method, and image blocks containing targets are deleted from the homogeneous image regions, and then, a data set for training and testing the classifier is established. Secondly, a lightweight Convolutional Neural Network is designed, and its training parameters are much smaller than the existing classification Convolutional Neural Network. Thirdly, the data set is used to train and test the Convolutional Neural Network. The results show that the accuracy is over 98%, which is better than the result of the traditional support vector machine method.
作者 林鸿生 张晓晖 孙春生 LIN Hong-sheng;ZHANG Xiao-hui;SUN Chun-sheng(College of Weaponry Engineering,Naval Univ.of Engineering,Wuhan 430033,China;Naval Petty Officer School,Bengbu 233012,China)
出处 《海军工程大学学报》 CAS 北大核心 2020年第6期72-76,89,共6页 Journal of Naval University of Engineering
基金 海军工程大学自然科学基金资助项目(435517D43)。
关键词 水下图像 噪声分类 Kendall等级相关系数 卷积神经网络 underwater image noise classification Kendall rank correlation coefficient convolution neural network
  • 相关文献

参考文献2

二级参考文献20

  • 1Kocak D M, Dalgleish F R, Caimi F M, et al. A Focus on Recent Developments and Trends in Underwater Imaging[J]. Marine Tehcnology Society Journal, 2008, 42( 1): 52-67.
  • 2储开丽 黄有为 金伟其 等.水下激光距离选通成像系统及其实验研究.红外与激光工程,:213-217.
  • 3Moore K D, Jaffe J S and Oehoa B L. Development of a New Underwater Bathymetric Laser Imaging System: L-Bath[J]. Journal of.4traospheric and Oceanic Technology, 2000, 17: 1106-1117.
  • 4Moore K D and Jaffe J S. Time-evolution of high-resolution topographic measurements of the sea floor using a 3-D laser line scan mapping system[J]. IEEE Journal of Oceanic Engineering, 2002, 27(3): 525-545.
  • 5Yoklavich M M and B.Grimes C. Using laser line scan imaging technology to assess deepwater seafloor habitats in the Monterey Bay National Marine Sanctuary[J]. Marine Technology Society Journal, 2003, 37(1): 18-26,.
  • 6Caimi F M, Dalgleish F R, Giddings T E, et al. Pulse versus CW Laser Line Scan Imaging Detection Methods: Simulation Results[C]//Proc. MTS/IEEE Oceans Europe, 2007: 1-4.
  • 7Dalgleish F R, Caimi F M, Britton W B, et al. An AUV-deployable pulsed laser line scan (PLLS) imaging sensor [C]//Proc. MTS/IEEE Oceans, 2007: 1-5.
  • 8Schechner Y Y and Karpel N. Recovery of Underwater Visibility and Structure by Polarization Analysis[J]. 1EEE Journal of Oceanic Engineering, 2005, 30(3): 570-587.
  • 9Treibitz T and Schechner Y Y. Instant 3Descatter[C]//Proc. IEEE, 2006, 2: 1861-1868.
  • 10Narasimhan S G, Nayar K, Sun B, et al. Structured light in scattering media[C]//Proc. IEEE, 2005, 1: 420-427.

共引文献33

同被引文献21

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部