期刊文献+

Structural Topology Optimization by Combining BESO with Reinforcement Learning 被引量:1

下载PDF
导出
摘要 In this paper,a new algorithm combining the features of bi-direction evolutionary structural optimization(BESO)and reinforcement learning(RL)is proposed for continuum structural topology optimization(STO).In contrast to conventional approaches which only generate a certain quasi-optimal solution,the goal of the combined method is to provide more quasi-optimal solutions for designers such as the idea of generative design.Two key components were adopted.First,besides sensitivity,value function updated by Monte-Carlo reinforcement learning was utilized to measure the importance of each element,which made the solving process convergent and closer to the optimum.Second,ε-greedy policy added a random perturbation to the main search direction so as to extend the search ability.Finally,the quality and diversity of solutions could be guaranteed by controlling the value of compliance as well as Intersection-over-Union(IoU).Results of several 2D and 3D compliance minimization problems,including a geometrically nonlinear case,show that the combined method is capable of generating a group of good and different solutions that satisfy various possible requirements in engineering design within acceptable computation cost.
出处 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2021年第1期85-96,共12页 哈尔滨工业大学学报(英文版)
  • 相关文献

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部