期刊文献+

基于大数据技术的广告精准投放算法设计及其效能评估

Design and Performance Evaluation of the Advertising Precision Placement Algorithm Based on the Big Data Technology
下载PDF
导出
摘要 传统广告投放精度低、评估准确性差,为了提高广告精准投放效能的实时评估能力,提出基于大数据分析技术的广告精准投放效能评估模型。首先构建广告精准投放效能集成信息统计数据模型,采用统计特征分析方法进行广告精准投放效能评估集的统计信息采样和样本回归分析。然后分析广告精准投放效能评估的系统状态模型,结合大数据融合方法进行广告精准投放效能的可靠性分析。在此基础上,最后提取关联规则特征量,采用大数据融合分析技术,实现广告精准投放算法设计及其效能评估。仿真测试结果表明,采用该方法进行广告精准投放算法设计及效能评估的精度较高,评估准确性较好,提高了广告精准投放的效能。 In order to improve the real-time evaluation ability of advertising precision delivery,a model of advertising precision delivery effectiveness evaluation based on big data analysis technology is proposed.Firstly,a statistical data model of integrated information of precise advertising delivery efficiency is constructed.Statistical information sampling and sample regression analysis of precise advertising delivery efficiency evaluation set are carried out by using statistical feature analysis method.Then,the system state model for evaluating the precision advertising delivery efficiency is analyzed,and the reliability of the precision advertising delivery efficiency is analyzed by combining the large data fusion method.On this basis,the feature quantity of association rules is extracted,and the large data fusion analysis technology is used to realize the precise advertising algorithm design and its effectiveness evaluation.The simulation results show that the method has high precision in designing precise advertising placement algorithm and efficiency evaluation,and the evaluation accuracy is better,which improves the efficiency of precise advertising placement.
作者 王庆娟 张维 徐家宁 WANG Qingjuan;ZHANG Wei;XU Jianing(Electric Power Research Institute,State Grid Zhejiang Electric Power Company,Hangzhou 310014,China)
出处 《微型电脑应用》 2021年第1期99-102,共4页 Microcomputer Applications
关键词 大数据技术 广告 精准投放 效能评估 样本回归分析 big data technology advertising precision delivery effectiveness evaluation sample regression analysis
  • 相关文献

参考文献9

二级参考文献47

共引文献201

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部