期刊文献+

二元柴油液滴碰撞过程数值模拟

Numerical simulation of binary diesel droplet collision process
下载PDF
导出
摘要 为研究发动机喷雾过程中柴油液滴碰撞的物理过程,基于流体体积法(VOF)建立了两相同尺寸柴油液滴碰撞模型,利用现有的试验数据对计算模型的准确性进行了验证.同时,开展了液滴对心及偏心碰撞过程的数值模拟,得到了聚合、分离、破碎3种碰撞结果及其区域分布的We-B图,探讨了碰撞过程中所发生的能量转化机制.结果表明:对心碰撞聚合与分离的临界We数为17.3,分离与破碎的临界We数为92.0;与对心碰撞相比,偏心碰撞过程中所存在的旋转运动,导致聚合与分离的临界韦伯数随碰撞参数B的增加呈先增大后减小的趋势. To investigate the physical process of diesel droplet collision during engine spraying,the models of two diesel droplet collision with the same size were established based on the volume of method(VOF),and the calculation model was verified using existing experiment data.The numerical simulations of droplet centering and the eccentric collision processes were carried out,and the We-B diagrams of three collision results and their regional distributions were obtained.The energy conversion mechanism occurred during the collision was discussed.The results show that the critical We number for the convergence and separation of centroid collision is 17.3,and the critical We number for the separation and fragmentation is 92.0.Compared with the centroid collision,the rotational motion during the eccentric collision causes the critical Weber number of aggregation and separation to follow the collision.The change of parameter B shows a trend of increasing with latter decreasing.
作者 金豪杰 魏明锐 JIN Haojie;WEI Mingrui(Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan, Hubei 430070, China;Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan, Hubei 430070, China)
出处 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2021年第1期56-61,共6页 Journal of Jiangsu University:Natural Science Edition
基金 新能源汽车科学与关键技术学科创新引智基地项目(B17034)。
关键词 液滴 碰撞 柴油 流体体积法(VOF) 临界韦伯数 droplet collision diesel volume of fluid(VOF) critical Weber number
  • 相关文献

参考文献5

二级参考文献36

  • 1魏明锐,文华,刘永长,张煜盛.喷雾过程液滴碰撞模型研究[J].内燃机学报,2005,23(6):518-523. 被引量:21
  • 2Paradis P-F, Ishikawa T. Surface tension and viscosity measurements of liquid and under- cooled alumina by containerless techniques [ J]. Japanese Journal of Applied Physics, 2005, 44(7A) : 5082-5085.
  • 3Laredo D, McCrorie II J D, Vaughn J K, Netzer D W. Motor and plume particle size measure- ments in solid propellant micromotors[J]. Journal of Propulsion and Power, 1994, 10(3) : 410-418.
  • 4Jeenu R, Pinumalla K, Deepak D. Size distribution of particles in combustion products of alu- minized composite propellant[ JJ. Journal of Propulsion and Power, 2010, 26(4) : 715-723.
  • 5XIA Sheng-yong, HU Chun-bo. Experimental study of collision of liquid A1203/A1 droplets[ J]. Journal of Propulsion and Power, 2013, 29(1) : 95-103.
  • 6Averin V S, Arkhipov V A, Vasenin I M, Dyachenko N N, Trofmaov V F. Effect of a sudden change in cross-sectional area of the solid rocket motor duct on coagulation of condensed par- ticles[J]. Combustion, Explosion, and Shock Waves, 2003, 39(3) : 316-322.
  • 7Najjar F M, Ferry J P, Haselbacher A, Balachandar S. Simulations of solid-propellant rock- ets: effects of aluminum droplet size distribution E J J. Journal of Spacecraft and Rockets, 2006, 43(6) : 1258-1270.
  • 8Salita M. Use of water and mercury droplets to simulate Al:O3 collision/coalescence in rocket motorsIJ]. Journal of Propulsion and Power, 1991, 7(4) : 505-512. S.
  • 9abnis J S. Numerical simulation of distributed combustion in solid rocket motors with metal- ized propellantl J]. Journal of Propulsion and Power, 2003, 19( 1 ) : 48-55.
  • 10Popinet S. Gerris: a tree-based adaptive solver for the incompressible Euler equations in com- plex geometriesEJ]. Journal of Computational Physics, 2003, 190(2) : 572-500.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部