摘要
大学生助学金资助精准识别与认定是实际操作中的难题,无法实现资助定量分析,而定性分析目前又较模糊,缺乏科学性。鉴于此,对大学资助对象进行建模,实现定量和定性分析相结合,以达到精准识别目的。创造性地利用校园网已建的“互联网+”、“大数据”平台收集学生日常消费习惯、日常行动轨迹等数据,通过建立精确预测模型对学生在校生活水平进行定量和定性分析。实际操作效果表明,该分析模型实操性强,能够实现精准资助。
Accurate identification of college student grants is a difficult problem in reality.Quantitative analysis of funding cannot be done,and qualitative analysis is currently relatively vague.In view of this,the university funding objects are modeled,and quantita⁃tive and qualitative analysis are combined to achieve the purpose of accurate identification.This article creatively uses the“Internet+”and“big data”platforms that have been built on the campus network to collect data on students’daily consumption habits,daily action trajectories,etc.,and establishes a precise prediction model to quantitatively and qualitatively analyze the quality of students’school life.From the actual operation effect analysis,the proposed model is practical and can be accurately funded.
作者
仲蓓鑫
孔苏鹏
程实
张恒
ZHONG Bei-xin;KONG Su-peng;CHENG Shi;ZHANG Heng(School of Information Science and Technology,Nantong University;Alibaba Cloud Big Data Academy,Nantong University,Nantong 226019,China)
出处
《软件导刊》
2021年第1期185-190,共6页
Software Guide
基金
国家自然科学基金(青年)项目(61602267)
教育部高教司协同育人项目(201802046012)
南通大学教学改革项目(2018B43)。
关键词
精准资助
大数据
预测模型
助学金发放
precise grant-aid
big data
forecast model
grant disbursement