期刊文献+

一种基于气压悬浮磨料池光整加工方法的研究 被引量:1

Research on a finishing method based on air pressure suspension abrasive tank
下载PDF
导出
摘要 针对复杂曲面难加工零件,提出一种基于气压悬浮磨料池光整加工方法:采用气压悬浮磨料的混合方式,工件表面与流态化磨料产生相对运动速度,从而使固体颗粒与工件表面发生微观二体磨料磨损。通过对磨粒进行动力分析以及气固二相流加工机理分析,揭示了磨料池内部气体和磨料混合及扩散规律。利用光整加工实验确定了光整加工过程中最佳的主轴转速和工件进给速度,当磨料池的管道布局方式为螺旋上升时,光整加工效率最高,表面质量最好。 Aiming at the difficult-to-machine parts of complex curved surfaces,a finishing method based on air pressure suspension abrasive tank was proposed.The mixing method of pneumatic suspension abrasives was used to produce the relative motion speed between the surface of the workpiece and the fluidized abrasive,so that the solid particles and the surface of the workpiece have microscopic two-body abrasive wear.Through the dynamic analysis of the abrasive particles and the analysis of the gas-solid two-phase flow processing mechanism,the mixing and diffusion laws of gas and abrasive inside the abrasive tank were revealed.The optimum spindle speed and feed rate during the finishing process were determined by the finishing test.When the pipeline layout of the abrasive tank was spirally rising,the finishing efficiency was the highest and the surface quality was the best.
作者 席志刚 李松 梅盛开 齐晓霓 袁伟 郭前建 XI Zhigang;LI Song;MEI Shengkai;QI Xiaoni;YUAN Wei;GUO Qianjian(School of Mechanical Engineering,Shandong University of Technology,Zibo 255049,China)
出处 《现代制造工程》 CSCD 北大核心 2021年第1期1-5,共5页 Modern Manufacturing Engineering
基金 国家自然科学基金项目(51879154) 山东省自然科学基金项目(ZR2018LE011) 山东省重点研发计划项目(2019GGX104033)。
关键词 磨料池 光整加工 表面质量 复杂曲面 abrasive pool finishing surface quality complex surface
  • 相关文献

参考文献3

二级参考文献11

  • 1Halsey T C. Electrorheological fluids[J]. Science,1992, 258:761-766.
  • 2Tao R. Structure and dynamics of dipolar fluids under strong shear[J]. Chemical Engineering Science, 2006, 61: 2186-2190.
  • 3Wu C W, Conrad Hans. Shear strength of electrorheological particle clusters [J]. Materials Science and Engineering, 1998, A248 : 161-164.
  • 4Kuriyagawa T, Syoji K. Development of electrorheological fluid assisted machining for 3-dimensional small parts[J]. Journal of Japan Society for Precision Engineering, 1999,65 (1): 145-149.
  • 5Kuriyagawa T, Saeki M, Syoji K. Electrorheological fluid-assisted ultra-precision polishing for small three-dimensional parts[J]. Precision Engineering, 2002, 26: 370-380.
  • 6Kim W B, Min B K, Lee SJ. Development of a padless ultraprecision polishing method using electrorheological fluid[J]. Journal of Materials Processing Technology, 2004, 155/156: 1293-1299.
  • 7Zhang L, He X S, Yang H R, et al. An integrated tool for five-axis electrorheological fluid-assisted polishing[J]. International Journal of Machine Tools and Manufacture, 2010,50: 737-740.
  • 8Bossis G, Lacis S, Meunier A, et al. Magnetorheological fluids[J]. Journal of Magnetism and Magnetic Materials, 2002, 25:224-228.
  • 9Kim W B, Lee S J, Kim Y J, et al. The electromechanical principle of electrorheological fluid-assisted polishing[J]. International Journal of Machine Tools and Manufacture, 2003, 43:81-88.
  • 10吕志清.半球谐振陀螺在宇宙飞船上的应用[J].压电与声光,1999,21(5):349-353. 被引量:32

共引文献7

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部