期刊文献+

表象变换和久期微扰理论在耦合杜芬方程中的应用 被引量:2

Applications of representation transformation and secular perturbation theory to coupled Duffing equations
下载PDF
导出
摘要 本文通过对耦合杜芬方程线性项的表象变换及非线性项的久期微扰理论的应用,将耦合杜芬方程转化为简正表象下的退耦合形式,由此可以很方便地得出耦合杜芬方程的解.为了验证该方法的正确性,设计了音叉耦合实验,观测到了振幅谱谱峰的劈裂以及"振滞回线"现象,这些实验结果都可以和之前所得的理论结果符合得很好.本文求解耦合非线性方程的方法,为灵活运用非线性理论提供一种方案,同时可以推广到光、电等耦合体系,对理解耦合体系的动力学行为具有一定的指导意义. In physics,the non-linear mode coupling is an important strategy to manipulate the mechanical properties of a vibrational system.Compared with the single-mode nonlinear system,the complex systems with two-or multi-mode nonlinear coupling have garnered considerable attention,among which the analytical solutions to the coupled Duffing equations are widely studied to solve nonlinear coupling.The fact is that the solving of the Duffing coupling equations generally starts with the eigenmodes solution of the linear equations.The trial solution of the coupled equations is the linear superposition of the eigenmodes.Under the secular perturbation theory and similar conditions,the Duffing coupling equation degenerates into two decoupled equations.However,thus far most of the solution methodologies are too complicated to unravel the underlying physical essence clearly.In this paper,first,by applying the representational transformation to the linear terms of the first-order coupled Duffing equations and the secular perturbation theory for the nonlinear terms,a decoupled expression of the first-order Duffing equations is derived,which can be solved more straightforwardly.Subsequently,in order to verify the correctness of the method,we design a coupled tuning fork mechanical vibration system,which consists of two experimental instruments to provide driving force and receive signals,two tuning forks and springs.The amplitude spectra are measured by an experimental instrument of forced vibration and resonance(HZDH4615),which provides a periodic driving signal for the tuning fork.The numerical fitting by software is employed to clarify the mechanism of the spectrum.Theoretically,the obtained fitting parameters can also evaluate some important attributes of the system.Most strikingly,due to the nonlinear coupling the splitting of the resonant peak and the phenomenon of"hysteresis loop"are clearly observed in the experiment.The research shows that the experimental results perfectly match the theoretical results obtained before.The method of solving coupled nonlinear equations in this article provides a solution and improvement of flexible adoption of nonlinear theory.On the other hand,it can be extended to coupled light and electricity systems,offer certain guidance for understanding the dynamic behavior of coupled systems,and will be conductive to the quantitative examination of numerous nonlinear coupling devices.
作者 李朝刚 汪茂胜 方泉 彭雪城 黄万霞 Li Chao-Gang;Wang Mao-Sheng;Fang Quan;Peng Xue-Cheng;Huang Wan-Xia(Anhui Province Key Laboratory of Optoelectronic Materials Science and Technology,School of Physics and Electronic Information,Anhui Normal University,Wuhu 241002,China)
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2021年第2期347-353,共7页 Acta Physica Sinica
基金 复旦大学应用表面物理国家重点实验室(批准号:KF2018_01) 安徽省高等学校省级质量工程项目(批准号:2019mooc066)资助的课题.
关键词 耦合杜芬方程 耦合模理论 表象变换 久期微扰理论 非线性效应 coupled Duffing equations coupled-mode theory representational transformation secular perturbation theory nonlinear effect
  • 相关文献

参考文献5

二级参考文献57

  • 1孙克辉,谈国强,盛利元,张泰山.Lyapunov指数计算算法的设计与实现[J].计算机工程与应用,2004,40(35):12-14. 被引量:14
  • 2李月,路鹏,杨宝俊,赵雪平.用一类特定的双耦合Duffing振子系统检测强色噪声背景中的周期信号[J].物理学报,2006,55(4):1672-1677. 被引量:40
  • 3刘洪臣, 苏振霞. 双降压式全桥逆变器非线性现象的研究[J]. 物理学报, 2014, 63(1): 010505.
  • 4万波, 周洋. 关于一元函数复合后的混沌特性的研究[J]. 物理学报, 2014, 63(1): 010500.
  • 5Carmeli M 1985 Found. Phys. 15 175.
  • 6Carmeli M 1986 Int. J. Theor. Phys. 25 89.
  • 7Luo S K 1996 J. Beijing Inst. Technol. 16 154 (in Chinese).
  • 8Luo S K 1998 Appl. Math. Mech. 19 45.
  • 9Huang J C, Jing Z J 2009 Chaos Solitions and Fractels 40 1449.
  • 10Ma S J, Xu W, Li W 2006 Acta Phys. Sin. 55 4013 (in Chinese).

共引文献64

同被引文献10

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部