期刊文献+

Li(Na)AuS体系拓扑绝缘体材料的能带结构

Band structure of topological insulator Li(Na)AuS
下载PDF
导出
摘要 在拓扑领域中发现可以通过大数据搜索拓扑绝缘体,使得此领域对材料的探索转变为对材料性质的研究.半Heusler合金体系是非平庸拓扑绝缘体材料的重要载体.通过全势线性缀加平面波方法计算Li(Na)AuS体系拓扑绝缘体材料的能带结构.采用各种关联泛函计算LiAuS的平衡晶格常数,发现得到的能带图均为具有反带结构的拓扑绝缘体,而且打开了自然带隙.较小的单轴应力破坏立方结构后也破坏了此类拓扑绝缘体的自然带隙,通过施加单轴拉应力直到四方结构的平衡位置时,系统带隙值约为0.2 eV,这与立方结构平衡位置得到的带隙结果一致.运用同族元素替代的手段,实现了在保证材料拓扑绝缘体性质的同时,不改变立方结构,在体系的平衡晶格常数下使得材料的带隙打开,从而提高了实验合成拓扑绝缘体材料的可行性. Half-Heusler semiconductors exhibit similar properties:the differences among their properties lie only in the fact that in ternary compositions the zinc-blende binary substructure does not provide the required 18 electrons,but this is improved by adding an extra transition metal,which restores the electronic balance.Half-Heusler ternary compound with 18 valence electrons under an appropriate uniaxial strain is a topological insulating phase.Most importantly,it is proposed that in the half-Heusler family,the topological insulator should allow the incorporating of superconductivity and magnetism.Using the first-principle full-potential linearized augmented wave method we study the band structure of a series of Li(Na)AuS topological insulators.The electronic and magnetic properties of Heusler alloys are investigated by the WIEN2k package.The exchangecorrelations are treated within the generalized gradient approximation of PerdeweBurke and Ernzerhof(GGA),the local spin density approximation(LSDA),by using the modified Becke-Johnson exchange potential and the correlation potential of the local-density approximation(MBJ).Spin-orbit coupling is treated by means of the second variational procedure with the scalar-relativistic calculation as basis.We first determine the equilibrium lattice constants by calculating the total energy.The theoretical lattice constant of LiAuS full-potential GGA is6.02?,which is somewhat greater than the result of pseudopotential(5.99?).The calculated equilibrium lattice parameter is 5.86?for LSDA.Most of the half-Heusler compounds have band inversion,and open the nature band gaps,but the gap of MBJ is not very good.Smaller uniaxial stress damages the cubic structure and also such a natural band gap of topological insulators.By applying uniaxial tensile stress until the equilibrium position is reached in all directions of the structure,the system band gap value is about 0.2 eV,which is consistent with the result obtained from the band gap of cubic structure equilibrium position.When uniaxial tensile stress is 41%,the system turns into a tetragonal structure,the equilibrium lattice constant is a=5.2477?and c/a=1.41.We use the method of substitution of homologous elements to ensure the properties of topological insulator of materials without changing the cubic structure,and open the bandgap of materials under the equilibrium lattice constant of the system,thereby improving the feasibility of experimental synthesis of topological insulator materials.Our results for the doping suggest that epitaxial strain encountered during experiment can result in electronic topological transition.We hope that the results presented here conduce to further experimental investigation of the electronic topological transition in half-Heusler compounds.
作者 许佳玲 贾利云 刘超 吴佺 赵领军 马丽 侯登录 Xu Jia-Ling;Jia Li-Yun;Liu Chao;Wu Quan;Zhao Ling-Jun;Ma Li;Hou Deng-Lu(Department of Mathematics and Physics,Hebei Institute of Architecture Civil Engineering,Zhangjiakou 075000,China;College of Physics,Hebei Normal University,Shijiazhuang 050016,China)
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2021年第2期373-378,共6页 Acta Physica Sinica
基金 国家自然科学基金(批准号:51971087) 河北省自然科学基金(批准号:A2018205144) 河北省科技支撑计划项目(批准号:15211036) 张家口市财政支持计划项目(批准号:1611070A) 河北建筑工程学院博士基金(批准号:B-201807)资助的课题.
关键词 拓扑绝缘体 HEUSLER合金 第一性原理 能带结构 topological insulators Heusler alloys first principle band structure
  • 相关文献

参考文献3

二级参考文献21

  • 1Fu L;Kane C L.查看详情[J],Physical Review B:Condensed Matter,2007045302.
  • 2Bernevig B A;Hughes T L;Zhang S C.查看详情[J],Science20061757.
  • 3Zhang H J;Liu C Q;Qi X L;Dai X Fang Z Zhang S C.查看详情[J],Nature Physical Science2009438.
  • 4Kuroda K;Kimura A;Eremmev S V;Ueda Y Tanijuchi M.查看详情[J],Physical Review Letters201014680.
  • 5Feng W X;Xiao D;Ding J;Yao Y G.查看详情[J],Physical Review Letters2011016402.
  • 6Sun Y;Chen X Q;Li D Z;Cesare F Yunoki S Li Y Y Sun Z F.查看详情[J],Physical Review Letters2010016402.
  • 7Chadov S;Qi X L;Kubler J;Fecher G Felser C.查看详情[J],Nature Materials2010541.
  • 8Lin H;Wray A;Xia Y Q;Xu S Y Jia S Hasan M Z.查看详情[J],Nature Materials2010546.
  • 9Xiao D;Yao Y G;Feng W X;Zhu W G Chen X Q Zhang Z Y.查看详情[J],Physical Review Letters2010096404.
  • 10Heusler_F.查看详情[J],Deut Phys Ges1903.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部